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Abstract

A critical set in a Latin square of order n is a set of entries in an n× n array which

can be embedded in precisely one Latin square of order n, with the property that if

any entry of the critical set is deleted, the remaining set can be embedded in more

than one Latin square of order n.

The number of critical sets grows super-exponentially as the order of the Latin

square increases. It is difficult to find patterns in Latin squares of small order

(order 5 or less) which can be generalised in the process of creating new theorems.

Thus, I have written many algorithms to find critical sets with various properties

in Latin squares of order greater than 5, and to deal with other related structures.

Some algorithms used in the body of the thesis are presented in Chapter 3; results

which arise from the computational studies and observations of the patterns and

subsequent results are presented in Chapters 4, 5, 6, 7 and 8.

The cardinality of the largest critical set in any Latin square of order n is denoted

by lcs(n). In 1978 Curran and van Rees proved that lcs(n) ≤ n2− n. In Chapter 4,

it is shown that lcs(n) ≤ n2 − 3n+ 3.

Chapter 5 provides new bounds on the maximum number of intercalates in Latin

squares of orders 2αm (m odd, α ≥ 2) and 2αm + 1 (m odd, α ≥ 2 and α 6= 3),

and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich

Latin squares of orders 11 and 14.

In Chapter 6 a construction is given which verifies the existence of a critical set

of size
n2

4
+ 1 when n is even and n ≥ 6. The construction is based on the discovery

of a critical set of size 17 for a Latin square of order 8.

In Chapter 7 the representation of Steiner trades of volume less than or equal

to nine is examined. Computational results are used to identify those trades for

which the associated partial Latin square can be decomposed into six disjoint Latin
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interchanges.

Chapter 8 focusses on critical sets in Latin squares of order at most six and

extensive computational routines are used to identify all the critical sets of different

sizes in these Latin squares.
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Chapter 1

Introduction

This thesis examines the combinatorial structure of the “Latin square” and related

ideas. A “Latin square” can be thought of as a set of ordered triples having certain

properties. The first known written reference on this combinatorial structure was

in 1723 [23]. A Latin square of order n is most commonly described as an n × n

array of symbols from a set N of cardinality n such that each symbol from the set N

occurs once in each row and column. One of the earliest problems relating to Latin

squares, the “Thirty-six Officers Problem”, was stated by Euler in 1779 [23]. In

this thesis, the topic under examination is the concept of subsets of a Latin square

which contain just enough information to generate the complete Latin square. These

subsets are known as “critical sets”.

The name “critical set” and the concept were invented by a statistician, John

Nelder, in 1977, and his ideas were first published in a note [56]. This note posed

the problem of giving a formula for the size of the largest and smallest critical sets

for a Latin square of a given order.

The initial theory of critical sets was expanded by authors such as Curran, van

Rees, Smetaniuk, C. Colbourn, M. Colbourn, and Stinson [21, 66, 67, 14] between

1978 and 1983. After eight years of silence, the topic was re-examined in a paper by

Cooper, Donovan and Seberry in 1991 [19]. Since then, the topic has been prolifically

covered by many authors; for instance, Donovan [31, 27, 30, 26, 18, 28, 29, 20],

Keedwell [45, 42, 43, 41, 44], and Mahmoodian [53, 50, 51, 54, 52].

More recently, critical sets have been put forward as a possible secret-sharing

scheme in Street [68], Cooper, Donovan and Seberry [20] and Seberry and Street
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[65]. Latin squares have been used in cryptographic contexts in papers such as

[12] and [64] and critical sets would be a useful way of reducing the storage space

required for the Latin squares.

Chapter 2 provides definitions which will be used in the thesis and gives the

appropriate background information which has been presented in these papers.

In order to discover critical sets with unusual properties, it is crucial to write

efficient algorithms, to use fast computers and to experiment with unorthodox ap-

proaches. As the computational aspects of my work underlie the rest of the thesis,

Chapter 3 is devoted to the presentation of some of the algorithms used in the rest

of the thesis. Chapters 4 to 8 then present results arising from the use of these

algorithms.

Critical sets are complex structures and we are only just beginning to understand

them. Data generated by comprehensive computer searches for critical sets with

particular properties has helped us to generate much of the knowledge we now have

about these structures. However, research has shown that computer analysis of

critical sets, defining sets and premature partial Latin squares is computationally

expensive (see Colbourn [15] and Colbourn, Colbourn and Stinson [14]). Thus, it

has been useful to write fast and efficient algorithms in order to generate critical sets

in Latin squares of non-trivial orders. These algorithms are documented in Chapter

3, and have aided the discovery of patterns in such Latin squares. For example, the

development of the main theorem in Chapter 6 required the generation of a critical

set of order 8 and size 17. Results for specific orders of Latin squares have guided

the development of general results and conjectures which are given in Chapters 4 to

8.

The cardinality of the largest critical set in any Latin square of order n is denoted

by lcs(n). In 1978 Curran and van Rees proved that lcs(n) ≤ n2−n. In Chapter 4, it

is shown that lcs(n) ≤ n2− 3n+ 3. This is joint work with Ebadollah Mahmoodian,

and has been submitted for publication (see [7]).

In Chapter 4, we also show that the constructions for the largest known critical

sets are closely related to constructions for Latin squares containing the largest

known number of intercalates for a given order. This connection is expanded upon

in Chapter 5. Chapter 5 is based on discussions with Ian Wanless, and gives new
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bounds for the maximum number of intercalates in Latin squares of orders 2αm (m

odd, α ≥ 2) and 2αm + 1 (m odd, α ≥ 2 and α 6= 3), and a new lower bound on

lcs(4m). We also discuss critical sets in intercalate-rich Latin squares of orders 11

and 14.

Later papers such as [31] introduce the idea of verifying the existence of certain

possible sizes of critical sets, instead of just looking for the upper and lower bounds.

In the cited paper, Donovan and Howse proved that for all n there exist critical

sets of order n and size s, where bn
2

4
c ≤ s ≤ n2 − n

2
with the exception of the

case s =
n2

4
+ 1 when n is even. In Chapter 6 a construction is presented for this

exception, where n ≥ 6. It is based on the discovery of a critical set of size 17 for a

Latin square of order 8. This verifies that there does exist a critical set of order n

and size
n2

4
+ 1 when n is even and n ≥ 6. This chapter is joint work with Diane

Donovan, and is published in [8].

There is a connection between critical sets in Latin squares, defining sets in

block designs (an analogous idea — see for example [68]) and premature partial

Latin squares (see Branković, Horák, Miller and Rosa [11]). However, in the past,

critical sets, defining sets and premature partial Latin squares have been studied

in isolation and, in many cases, using different techniques. But as articles [24]

and [25] showed, there is much to be gained by studying these configurations in

unison. A crucial element in the identification of defining sets or critical sets is

the determination of interchangeable sets within the design or Latin square. In

designs these interchangeable sets are known as trades and in Latin squares as

“Latin interchanges” (also known as “critical partial Latin squares” [41, 32]). So

in Chapter 7, we focus on the connection between Latin interchanges and trades in

designs, and develop new results which help us classify these structures.

Latin interchanges are particularly important when searching for critical sets

with given properties such as a fixed size, or symmetrical properties, and are used

to establish that certain subsets of Latin squares are critical. The use of interchanges

was important in proving the existence of a critical set of order n (n even) and size
n2

4
+ 1, and also in the enumeration of critical sets of order at most six (Chapter 8).

The representation of Steiner trades of volume less than or equal to nine, provided

in Khosrovshahi and Maimani [47], is examined and those for which the associated
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partial Latin square can be decomposed into six disjoint Latin interchanges are

identified. This is joint work with Diane Donovan, Abdollah Khodkar, and Anne

Street and has been published in [9]. This research has led to a study of the inherent

nature of these configurations in order to obtain information for refining searches

and associated algorithms.

Chapter 8 focusses on critical sets in Latin squares of order at most six and all the

critical sets of different sizes in these Latin squares are enumerated. We comment

on properties of the numbers of critical sets found, particularly for the case of order

6 Latin squares, and establish that lcs(6) = 18. This chapter is joint work with

Peter Adams and Abdollah Khodkar (see [1]).

The conclusion, with suggestions for further research, forms Chapter 9.

Three appendices are provided, giving results which are referred to in Chapters

4, 6 and 8.
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Chapter 2

Definitions

This chapter gives all the basic definitions required in the body of this thesis, and

relevant references are given.

2.1 Latin Squares

An n× n Latin square is an n× n array of symbols (or elements) chosen from a set

N of size n such that each symbol occurs exactly once in each row and exactly once

in each column. In this thesis, we take N = {0, . . . , n− 1} or N = {1, . . . , n}. The

context in which the numbers occur will always make clear which set is in use. The

positive integer n is known as the order of the Latin square.

A Latin square can be represented as a set of 3-tuples, or ordered triples. These

triples will be referred to as entries. The first element in a 3-tuple (i, j; k) refers

to the row number, i, the second to the column number, j, and the third to the

symbol, k, of N contained in the cell at the intersection of the row i with the

column j. Throughout this thesis it will be assumed that where an entry in an n×n

Latin square based on the set of symbols N = {0, . . . , n − 1} is referred to as a

3-tuple, the third element of the tuple has an implicit “(mod n)” after it. That is,

the third element falls into the range 0, . . . , n − 1. One example of an n × n Latin

square is BCn = {(i, j; i+ j) | 0 ≤ i, j ≤ n− 1}. This Latin square is known as the

back-circulant Latin square of order n. It is equivalent to the group table for the

group of integers, Zn. The Latin square BC6 is depicted overleaf.

14



0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

BC6

Another representation of Latin squares is used in two Russian sources, an

encyclopedia of mathematics [37] and Sachkov [63]. Sachkov calls two mappings

(also known as functions) ψ : X → Y and φ : X → Y discordant if for all

x ∈ X,ψ(x) 6= φ(x). A mapping ψ : X → Y is called a substitution if X = Y

and ψ is bijective. Then an n × n Latin square L is a sequence of n mutually dis-

cordant substitutions φi = {(x, y) | x, y ∈ N ∧ φi(x) = y} on a symbol set N of

size n, written L = [φ1, . . . , φn]n. An example of a 3 × 3 Latin square in this form

is L = [φ1, φ2, φ3]3, where φ1 = {(1, 1), (2, 2), (3, 3)}, φ2 = {(1, 2), (2, 3), (3, 1)}, and

φ3 = {(1, 3), (2, 1), (3, 2)}. (In this case, the substitutions are represented as ordered

pairs from X × Y .)

In a similar manner to the 3-tuple defined above, the notation (i, j) with reference

to a Latin square denotes the cell or position which is the intersection of row i and

column j in the n × n array. The symbol occurring in a certain position (i, j) in a

Latin square L may be written as Lij.

A Latin square L is called symmetric if for all entries (x, y; z) in L, the entry

(y, x; z) is also in L.

Similarly, a Latin square L is called totally symmetric, first defined in [5], if for

all entries (x, y; z) ∈ L, {(y, x; z), (x, z; y), (y, z;x), (z, x; y), (z, y;x)} ⊆ L.

A transversal T in an n × n Latin square L is a set of n entries from L,

{(r1, c1; e1), . . . , (rn, cn; en)} such that all rows, columns, and symbols are repre-

sented exactly once; that is, {r1, . . . , rn}, {c1, . . . , cn}, and {e1, . . . , en} are each sets

of size n.

Given a transversal T = {(r1, c1; e1), . . . , (rn, cn; en)} in an n×n Latin square L,

we prolong L along T to obtain L′. That is, we form a new Latin square L′ of order

n + 1 from L, using the transversal T , as follows. Let L′ = {(ri, ci;n + 1) | 1 ≤ i ≤
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n}∪{(n+ 1, n+ 1;n+ 1)}∪{(ri, n+ 1; ei), (n+ 1, ci; ei) | 1 ≤ i ≤ n}∪ (L \T ). This

technique, called prolongation, will be used in Chapters 3 and 5. It is also referred

to as stripping the transversal in Lindner and Rodger [49].

The following definition of the direct product of two Latin squares is taken from

Bedford and Whitehouse [10].

Let M and L be Latin squares of order m and n respectively with symbols from

the sets {0, 1, . . . ,m − 1} and {0, 1, . . . , n − 1} respectively. Define Lr to be the

array obtained from L by adding rn to each symbol of L, for r = 0, 1, . . . ,m − 1.

The direct product of M with L is the Latin square of order mn constructed by

replacing each symbol r in M by the array Lr. This is denoted by M × L.

In Chapters 3 and 5, we shall concisely denote the direct product of BCn with

itself m times as Zmn .

2.2 Partial Latin Squares

A partial Latin square is an n× n array such that each symbol from a set N of size

n occurs at most once in each row and at most once in each column. The number of

non-empty positions of the array is called the size (or volume) of the partial Latin

square. The shape of the partial Latin square is the set of non-empty positions.

Expressed in set-theoretic terms, if P is a partial Latin square represented as a set

of ordered triples, the size of P is |P | and the shape of P is S(P ) = {(i, j) | (i, j; k) ∈

P}. An n × n partial Latin square containing n2 entries is called a complete Latin

square or just a Latin square. If a partial Latin square P is a subset of exactly

one Latin square L it is said that P is uniquely completable, or UC for short. A

completion of P is a Latin square L which is a superset of P .

For a partial Latin square P in a Latin square L with symbol set N , we define

the following sets for each row i ∈ N , column j ∈ N and symbol k ∈ N . For

fixed i, let Ri(P ) = {k | (i, j; k) ∈ P}; for fixed j, let Cj(P ) = {k | (i, j; k) ∈ P};

and for fixed k, let Ek(P ) = {(i, j) | (i, j; k) ∈ P}. So Ri(P ) (Cj(P )) is the set of

symbols which appear in row i (column j) of P and Ek(P ) is the set of positions

in P where the symbol k appears. Then, for each position (i, j), 1 ≤ i, j ≤ n, we

define xi,j(P ) = |Ri(P ) ∪ Cj(P )|. The concepts of Ri(P ), Cj(P ), Ek(P ) and xi,j(P )

16



Table 2.1: Critical sets and Latin squares of order 3

0

2

0 1 2

1 2 0

2 0 1

0 2 1

2 1 0

1 0 2

1 0 2

0 2 1

2 1 0

P BC3 L1 L2

will help in explaining the ideas behind Chapter 4, where we use these concepts to

tighten the bound on the largest size of a critical set in a Latin square.

An m × m subsquare of a Latin square L with symbol set N is a set S of m2

entries in L such that the sets of first, second and third elements in the ordered

triples in S contain m different rows, m different columns and m different symbols

respectively. In formal terms, |S| = m2 and for all i, j, k ∈ N, |Ri(S)| = m or

|Ri(S)| = 0, |Cj(S)| = m or |Cj(S)| = 0, and |Ek(S)| = m or |Ek(S)| = 0.

2.3 Critical Sets

A proper subset P of a Latin square L is called a critical set if

1. P is uniquely completable, and

2. the omission of any entry in P destroys the unique completion property [56].

For example, in Table 2.1 above, the partial Latin square P is a critical set for

BC3, since it has unique completion to BC3, but P \ {(1, 1; 2)} completes to both

BC3 and L1, and P \ {(0, 0; 0)} completes to both BC3 and L2. P \ {(1, 1; 2)} and

P \ {(0, 0; 0)} each have precisely four completions.

All of the following definitions, related to “weak” or “strong” critical sets of

various kinds, will be used in Chapter 8, where we enumerate and classify all critical

sets of order at most six. The next two definitions are taken from Bate and van

Rees [6].

A strong critical set C for a Latin square L with symbol set N is a critical set

such that there is a sequence of m = n2 − |C| partial Latin squares C = P1 ⊂

P2 ⊂ · · · ⊂ Pm ⊂ L where for any i, 1 ≤ i ≤ m − 1, Pi ∪ {(ri, ci; ei)} = Pi+1 and

Pi ∪ {(ri, ci; e)} is not a partial Latin square for any e ∈ N \ {ei}.
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A semi-strong critical set C for a Latin square L with symbol set N is a critical

set such that there is a sequence of m = n2 − |C| partial Latin squares C = P1 ⊂

P2 ⊂ · · · ⊂ Pm ⊂ L where for any i, 1 ≤ i ≤ m− 1, Pi ∪ {(ri, ci; ei)} = Pi+1 and one

of Pi ∪{(ri, ci; e)} or Pi ∪{(r, ci; ei)} or Pi ∪{(ri, c; ei)} is not a partial Latin square

for any e ∈ N \ {ei}, or is not a partial Latin square for any r ∈ N \ {ri}, or is not

a partial Latin square for any c ∈ N \ {ci} respectively.

A weak critical set is a critical set which is neither strong nor semi-strong.

In the process of completing the critical set C to the Latin square L of order n

which it characterizes, we say that the addition of an entry t = (r, c; s) (where (r, c)

is empty in C) is forced (see [45]) in the process of completion of a set T of entries

(|T | < n2, C ⊆ T ⊂ L) to the complete set of entries which represents L, if one of

the following holds:

(i) ∀r′ 6= r, ∃z 6= c such that (r′, z; s) ∈ T or ∃z 6= s such that (r′, c; z) ∈ T , or

(ii) ∀c′ 6= c, ∃z 6= r such that (z, c′; s) ∈ T or ∃z 6= s such that (r, c′; z) ∈ T , or

(iii) ∀s′ 6= s, ∃z 6= r such that (z, c; s′) ∈ T or ∃z 6= c such that (r, z; s′) ∈ T .

A critical set is called totally weak if no entry is forced.

The following extension of the concept of the semi-strong critical set is taken

from Bedford and Whitehouse [10]. To give the definition of a near-strong critical

set, we need to give a definition of a conjugate of a partial Latin square, which will

be expanded upon in Section 2.7.

If {a, b, c} = {1, 2, 3}, then the (a, b, c)− conjugate of P is denoted and defined

by P(a,b,c) = {(xa, xb;xc) | (x1, x2;x3) ∈ P}. For θ ∈ S3, the symmetric group on

{1, 2, 3}, we define θ(x1, x2, x3) = (xθ(1), xθ(2), xθ(3)).

Let P be a partial Latin square of order n defined on a symbol set N . Then AP

is an array of alternatives for P if

1. AP is an n× n array ;

2. whenever the (i, j)th cell of P is filled, the (i, j)th cell of AP is empty; and

3. whenever the (i, j)th cell of P is empty, the (i, j)th cell of AP contains all the

symbols of N which do not appear in the ith row or jth column of P .

18



Table 2.2: Example of a semi-forced entry in a partial Latin square A

4

1 4 5 6

4 2 6

4 3

2 4

6 5 1 4

4

2 3 4 5

3 2 4

5 1

5 6

3 5 2 1

A A(1,3,2)

We denote the set of symbols in cell (i, j) of AP by AP (i, j). Let P be a partial

Latin square. We shall say that the symbol k′ ∈ AP (i, j) is forced out of AP if either:

(1) there exists r > 0 and i1, i2, . . . , ir (all 6= i) with k′ ∈ AP (i1, j)∪ . . .∪AP (ir, j)

and |AP (i1, j) ∪ . . . ∪ AP (ir, j)| = r; or

(2) θ(i, j, k′) satisfies 1 in APθ(1,2,3) for some θ ∈ S3.

The reduced array of alternatives, RAP , is the array obtained from AP by suc-

cessively removing symbols which are forced out until no more symbols can be forced

out. Then the addition of an entry (i, j; k) to P is said to be semi-forced if either:

1. k is the only symbol in RAP (i, j); or

2. k occurs exactly once in either the ith row or jth column of RAP .

Note that if a triple is forced it is also semi-forced.

For example, consider the partial Latin square A given in Table 2.2 above. We

examine the (1, 3, 2)-conjugate of A, A(1,3,2). The symbols 1 and 6 occur in some

order at the positions (2, 3) and (3, 3) of A(1,3,2), and the position (6, 3) of A(1,3,2)

must contain either 4 or 6. Thus, the position (6, 3) of A(1,3,2) is forced to contain

4. This is because the entry (6, 3; 6) is forced out of the array of alternatives for

A(1,3,2).

Therefore, we say that the addition of the triple (6, 4; 3) to A is semi-forced.

A UC set U is near-strong UC to the Latin square L if we can find a sequence

of sets of triples U = S1 ⊂ S2 ⊂ ... ⊂ Sf = L such that each triple t ∈ Sv+1 \ Sv is

semi-forced in Sv, where 1 ≤ v ≤ f − 1.
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We call a UC set Bedford-Whitehouse totally weak if no entry is semi-forced. If a

UC set is Bedford-Whitehouse totally weak, this implies that it is also totally weak.

In Keedwell’s terminology in [45], the phrase ‘strong critical set’ is equivalent to

Bate and van Rees’s semi-strong concept, and a weak critical set is one which is not

strong, which is equivalent to the definition of Bate and van Rees. The terminology

of Keedwell will be used in Chapter 8.

A parallel concept to total symmetry for Latin squares exists for critical sets. A

critical set C is called totally symmetric if for all entries (x, y; z) ∈ C,

{(y, x; z), (x, z; y), (y, z;x), (z, x; y), (z, y;x)} ⊆ C [60].

2.4 Latin Interchanges

Latin interchanges are subsets of Latin squares which are most often used in the

process of determining whether a given subset of a Latin square is a critical set. Their

use greatly speeds up this process, as testing whether several Latin interchanges

intersect a given set is a much faster process than attempting to determine whether

a given set has unique completion.

A Latin interchange in an n × n Latin square L1 is the set difference between

it and another n × n Latin square L2; that is, L1 \ L2. This is the most concise

definition to appear in the literature, and is used in [13]. A longer definition is given

in papers such as [41], where Latin interchanges are known as critical partial Latin

squares, and [32]. The definition from [32] follows.

Consider two partial Latin squares L and M of order n with symbol set N which

have the same size and shape. These are said to be disjoint if Lij 6= Mij for all

i, j ∈ N , and mutually balanced if, for each column c of L, the set of symbols in

column c of L is equal to the set of symbols in column c of M , and for each row r

of L, the set of symbols in row r of L is equal to the set of symbols in row r of M .

Formally, L and M are mutually balanced if for all r, c ∈ N , Rr(L) = Rr(M) and

Cc(L) = Cc(M).

It is said that M is a disjoint mate of L if L and M are disjoint and mutually

balanced. Then a Latin interchange is a partial Latin square P such that there exists

a disjoint mate, P ′ of P . At times it will be useful to emphasise the connection
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between a Latin interchange and its disjoint mate. This will be particularly true in

Chapter 7. So in Chapter 7 we shall refer to a Latin interchange as a pair of partial

Latin squares (P, P ′) and it will be assumed that P and P ′ are the same size and

shape, and are disjoint and mutually balanced.

An example of a Latin interchange I of order 3 and size 7 and its disjoint mate

I ′ is given below.

2 3

1 2

2 3 1

3 2

2 1

1 2 3

I I ′

An intercalate is a Latin interchange of size 4 [58]. It is also a 2× 2 subsquare.

In [41], Keedwell introduced the definition of the “type” of a Latin interchange.

The type of a Latin interchange S in an n×n Latin square is given by the following

vector: 
|C1(S)|+ |C2(S)|+ · · ·+ |Cn(S)|

|R1(S)|+ |R2(S)|+ · · ·+ |Rn(S)|

|E1(S)|+ |E2(S)|+ · · ·+ |En(S)|

 .

Note that if any of the values |Ci(S)|, |Ri(S)| or |Ei(S)| in the above vector are

zero, then for brevity they are omitted. The type of the Latin interchange, I, given

in the above example is 
2 + 2 + 3

2 + 2 + 3

2 + 3 + 2

 .

There is a relationship between critical sets and Latin interchanges. This rela-

tionship can be expressed in the following lemma.

Lemma 2.4.1 A partial Latin square C ⊂ L, of size s and order n, is a critical set

for a Latin square L if and only if both the following hold:

1. C contains an entry of every Latin interchange that occurs in L;

2. for each (i, j; k) ∈ C, there exists a Latin interchange I in L such that I∩C =

{(i, j; k)}.
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2.5 Designs, Defining Sets, and Trades

The following definitions will be used in Chapter 7 of this thesis, where a relationship

between trades in Steiner triple systems and Latin interchanges is introduced. The

concept of the defining set is analogous to that of the uniquely completable set and

it is interesting and useful to look at connections between the two concepts, as in

Chapter 7.

Let V = {1, . . . , v} and let B be a collection of 3-subsets chosen from V in such

a way that each pair of V occurs in at most one of the 3-subsets. Then (V,B) is

said to be a partial Steiner triple system and is sometimes referred to as a 2-(v, 3)

partial Steiner system. The 3-subsets are called blocks or triples and the replication

number for a given element e ∈ V is the number of triples in B which contain e. If

|B| = v(v− 1)/6 then each of the pairs of V is contained in precisely one triple of B

and in this case (V,B) is said to be a Steiner triple system of order v. We denote a

Steiner triple system of order v as STS(v).

Take two such partial Steiner triple systems with triples T and T ′. If |T | = |T ′|

and each of the pairs of elements of V contained in the triples of T are also contained

in the triples of T ′, then T and T ′ are said to be mutually balanced. If T and T ′

are mutually balanced and have no common triples, they form a 2-(v, 3) Steiner

trade usually denoted by T = (T, T ′). The volume(T) of the trade is |T | and the

foundation of T is F (T ) = {x | x is contained in a triple of T }.

For example, consider the trade T = (T, T ′) where T = {123, 156, 435, 426}

and T ′ = {126, 135, 423, 456}. T has volume |T | = 4 and foundation F (T ) =

{1, 2, 3, 4, 5, 6}.

Let T = (T, T ′) be a trade. We say T is a minimal trade if there is no set B

satisfying ∅ 6= B ⊂ T and no set B′ satisfying ∅ 6= B′ ⊂ T ′ such that (T \B, T ′ \B′)

is a trade.

Let (V,B) be a partial Steiner triple system of order v. We define the correspond-

ing partial Steiner Latin square of order v to be the v × v array I with entry k in

cell (i, j) if and only if {i, j, k} ∈ B. We emphasise that for each triple {x, y, z} ∈ T ,

I contains six entries (x, y; z), (x, z; y), (y, x; z), (y, z;x), (z, y;x), (z, x; y) [35]. In

Chapter 7 we shall often shorten a triple (x, y, z) to xyz where the context makes it
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clear that xyz is a triple.

The pair of partial Latin squares I and I ′ given below correspond to the trade

T = (T, T ′) given above. The partial Latin square I corresponds to T and the

partial Latin square I ′ corresponds to T ′.

3 2 6 5

3 1 6 4

2 1 5 4

6 5 3 2

6 4 3 1

5 4 2 1

6 5 3 2

6 4 3 1

5 4 2 1

3 2 6 5

3 1 6 4

2 1 5 4

I I ′

2.6 The Spectrum of Critical Set Sizes

In Nelder’s 1977 note on critical sets [56], he defined the concept of critical sets and

then proposed one problem, that of finding a formula for the size of the largest and

smallest critical sets in n× n Latin squares. He suggested that solutions should be

sought first for prime n, then for n a prime power, and then for general n. The best

known bounds for these functions are outlined below.

For an n × n Latin square, the size of the smallest and largest possible critical

sets, respectively, are denoted scs(n) and lcs(n) [56].

The best known bounds on scs(n) are:

• scs(n) ≥ b7n− 3

6
c for n > 20 ([34]).

• scs(n) ≥ n+ 1, for n ≥ 5 ([33] and [17] independently).

The best known bounds on lcs(n) are:

• lcs(n) ≥ n2 − n
2

, conjectured in [57] and proved in [28].

• lcs(2m) ≥ 4m − 3m, [67].

• lcs(2m − 1) ≥ 4n − 3n − 2n+1 + 3, [33].

• lcs(2m) ≥ 5m2 − 3m

2
, [26].
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In Chapter 4 of this thesis, we shall show that lcs(n) ≤ n2− 3n+ 3, and in Chapter

5, we shall show that lcs(4m) ≥ 23m2 − 9m

2
.

2.7 Classifying Latin Squares

Two Latin squares L and M are said to be isotopic if the rows, columns, or symbols

of L can be permuted to transform L to M .

Formally, let L = {(i1, j1; k1) | i1, j1, k1 ∈ N} and M = {(i2, j2; k2) | i2, j2, k2 ∈

N} be two Latin squares of order n. Then L is said to be isotopic to M if there exist

permutations α, β and γ of N , such that M = {(i1α, j1β; k1γ) | (i1, j1; k1) ∈ L}. In

this case M is said to be an isotope of L and the triple (α, β, γ) is said to be an

isotopism (see [39]). Two Latin squares L and M are said to be conjugate if rows,

columns or symbols in L can be interchanged, so that L is transformed to M .

Let L be an n× n Latin square. Then there are six Latin squares conjugate to

L, or six conjugates:

L;

L∗ = {(j, i; k) | (i, j; k) ∈ L};

−1L = {(k, j; i) | (i, j; k) ∈ L};

L−1 = {(i, k; j) | (i, j; k) ∈ L};

−1(L−1) = {(j, k; i) | (i, j; k) ∈ L}; and

(−1L)−1 = {(k, i; j) | (i, j; k) ∈ L}. [23]

Two Latin squares L and M are said to be in the same isotopy class if L is

isotopic to M , and in the same main class if L is isotopic to a conjugate of M .

These same concepts of isotopy classes and main classes can also be applied to

partial Latin squares.

The following table, Table 2.3, shows the number of main and isotopy classes for

Latin squares of order 1 ≤ n ≤ 8 (see Dénes and Keedwell [23]).

It is apparent from the table that even the number of main classes grows super-

exponentially with the order of the Latin square. Thus, enumerating all the critical
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Table 2.3: Number of main and isotopy classes for Latin squares of small order

order n 1 2 3 4 5 6 7 8

Main classes 1 1 1 2 2 12 147 283 657

Isotopic classes 1 1 1 2 2 22 564 1 676 267

sets by main classes would be currently impossible for Latin squares of order greater

than 7. Erroneous values for the number of isotopy classes of orders 7 and 8 have

been given in the standard references, [23] and [16].

We say that an n × n partial Latin square is reduced or in reduced form if it

contains the symbols 1, . . . , n in this order in the first row and in the first column.

2.8 Intercalates in Latin Squares

The maximum number of intercalates in an n×n Latin square is denoted I(n), [38].

Formally, where L is an n× n Latin square, denote the number of intercalates in L

by I(L). Let

A = {{(r1, c1; e1), (r1, c2; e2), (r2, c1; e2), (r2, c2; e1)} |

{(r1, c1; e1), (r1, c2; e2), (r2, c1; e2), (r2, c2; e1)} ⊆ L

∧(r1 6= r2) ∧ (c1 6= c2) ∧ (e1 6= e2)}, and

I(L) = |A|.

Then I(n) is the maximum value of I(L) where L ranges over all n×n Latin squares.

Thus, I(n) ≥ I(L) for any n× n Latin square, L.

Since an intercalate is the smallest possible Latin interchange, it has been useful

to investigate the number of intercalates in a Latin square. This information was

used in the search for a critical set of order 8 and size 17 in Chapter 6 (as outlined

in Chapter 3), and is used in the conclusion to Chapter 4, when commenting on

the conjectured link between Latin squares with I(n) intercalates and critical sets

of order n and size lcs(n).

Some exact, upper and lower bounds of I(n) are known for specific values of n.

25



The following results are a summary of the theorems in Heinrich and Wallis, [38].

These results will be used in Chapter 5 when discussing new bounds on I(n).

• When n is even, I(n) ≤ n2(n− 1)

4
with equality if and only if n = 2m;

• when n is odd, I(n) ≤ n(n− 1)(n− 3)

4
with equality if and only if n = 2m−1;

• when m is odd, I(2m) ≥ m3;

• when m is odd and α ≥ 1, I(2αm) ≥ (2αm)2(2αm+ 2α − 2)

8
;

• when m is odd and α ≥ 2, I(2αm + 1) ≥ 2αm(2αm(2αm + 2α − 10)/8 + m +

1) + 2α−1m(m− 1);

• when (m, 6) = 1, I(2m+ 1) ≥ m(2m− 3)(m− 1)

2
;

• when (m, 6) = 1, I(2αm+ 1) ≥ (2αm)((2αm)(2αm+ 2α − 2)− 10m+ 6)/8.

The next two results are from Kotzig and Zaks [48]:

• when k ≥ 1, I(4k + 1) ≤ 2k(8k2 − 4k − 1);

• when k ≥ 1, I(4k + 2) ≤ (2k + 1)(8k2 + 1).

In Chapter 5, we shall prove that I(2αm) ≥ (2αm)2(3.2αm + 2α − 4)/16, for

α ≥ 2 and m odd, and that I(2αm + 1) ≥ 2αm(2αm(3.2αm + 2α − 20)/16 + m +

1) + 2α−1m(m− 1), for α = 2 or α ≥ 4 and m odd.
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Chapter 3

Algorithms

Most of the results in this thesis were obtained via a combination of theoretical anal-

ysis and computational methods. In this chapter, we discuss some of the algorithms

which were used. In particular, we describe algorithms for the discovery of critical

sets and Latin interchanges, and the completion of partial Latin squares.

The discovery of patterns which will lead to new theorems such as those which

are presented in this thesis requires the study of Latin squares of non-trivial order,

that is, of order greater than 5. Since critical sets are complex structures, and as

the number of Latin squares increases super-exponentially with the order, it was

necessary to develop fast algorithms to generate critical sets with certain desired

properties, and as a consequence of this, to develop fast completion algorithms and

new algorithms for finding Latin interchanges.

The limitations of applying general principles to Latin squares of small order are

clearly seen in the slow progress which has been made in improving the general bound

on scs(n), the size of the smallest critical set in a Latin square. In 1978, Curran and

van Rees [21] showed that scs(n) ≥ n − 1 and by 1994, Cooper, McDonough and

Mavron had proven scs(n) ≥ n+ 1 for n ≥ 5 [17]. Perhaps the examination of small

critical sets for non-trivial orders of Latin squares will produce further breakthroughs

for this bound, just as the examination of large critical sets of non-trivial orders did

for lcs(n) in Chapter 4.
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3.1 Algorithms for finding critical sets

In the search for a critical set of a particular size m for a Latin square of known

order, one obvious approach is to find all subsets of size m in the Latin square, and

test each of these for unique completion. For each subset U which passes this test,

all the proper subsets of U of size |U | − 1 are tested for unique completion. If no

such subset has unique completion, U is a critical set. In [14], Colbourn, Colbourn

and Stinson proved that, in general, the problem of deciding whether a partial

Latin square P has unique completion is NP-complete, even given a Latin square

completing P . Thus, it is desirable to avoid the process of exhaustively testing for

unique completion by eliminating many subsets which are candidates through the

use of algorithms which run in polynomial time.

For example, the basis of the main theorem in Chapter 6 was the discovery of

a critical set of order 8 and size 17. Previously, many researchers have attempted

to find a critical set of this size with no success. To search exhaustively for any

such critical set in each of the 283 657 main classes of 8 × 8 Latin squares would

have required the testing of

(
64

17

)
, or more than 1015, subsets in each Latin square.

Thus, this algorithm is inefficient for finding all critical sets of a given size, and in

order to find very large critical sets, a completely different approach is required.

Consequently, two other more efficient algorithms (Algorithms 3.1.1 and 3.2.6) for

finding a critical set of size m in a known Latin square of order n × n have been

developed. These two algorithms are important as they form the basis for all other

searches.

The first (Algorithm 3.1.1) involves the same exhaustive search through all

(
n2

m

)
subsets of size m of the Latin square. The process is speeded by calculating in

advance some Latin interchanges in the Latin square and determining whether the

subset U intersects all these Latin interchanges. If a Latin interchange is found

which does not intersect U , then U cannot be a critical set. This approach has the

advantage of avoiding the time-intensive process of attempting to determine whether

the set U has unique completion. This algorithm is used in Chapter 8 to determine

all the critical sets in the main classes of Latin squares of order at most six.
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Algorithm 3.1.1 Finding a critical set

• Input an n× n Latin square L.

• Input a set I of Latin interchanges in L.

• Generate all size m subsets of the Latin square L. Place these subsets into a

set U .

• For each subset U in U ,

– Test whether there exists a Latin interchange I in I such that I ∩U = φ.

– If such a Latin interchange exists, proceed to the next subset in U . Oth-

erwise:

– Test whether U has unique completion. If not, proceed to the next subset.

Otherwise:

– Test whether any subset of U of size |U | − 1 has unique completion. If

so, then proceed to the next subset.

– Otherwise, output U , a critical set, and proceed to the next subset.

A further refinement of this method involves the decomposition of the Latin

square into disjoint Latin interchanges of small size, and ensuring in the generation

step that at least one entry of each of these Latin interchanges is included in the

subset U . Also, where the Latin interchanges are subsquares, the intersection of any

critical set with the subsquare must be a uniquely completable set in the subsquare;

otherwise, the subsquare has more than one completion. This last refinement was

particularly useful in Chapter 8, where some of the 6 × 6 Latin squares could be

partitioned into 3× 3 subsquares. We give an algorithm which assists with splitting

a Latin square into disjoint Latin interchanges.

Algorithm 3.1.2 Locating disjoint Latin interchanges in a Latin square

• Input an n× n Latin square L.

• Read in the array I of s Latin interchanges in L of small size.
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• Create an n× n array T such that T [i][j] contains the number of Latin inter-

changes of I in which the cell (i, j) is non-empty.

• Initialize an empty n× n partial Latin square P .

• When T [i][j] = 1, add the relevant Latin interchange to P , as it must occur

in any decomposition of L into disjoint Latin interchanges.

• Call the function choose(0).

The function choose(pos):

• If P = L, then L can be decomposed into disjoint Latin interchanges.

• For each Latin interchange I from I[pos] to I[s], if I is disjoint to P , then add

I to P and call choose(pos+1).

The use of bitmaps to check whether the Latin interchange intersects the pro-

posed critical set speeds the search considerably. Instead of using a for loop, the set

and the Latin interchange are represented as bitmaps and a logical OR used to test

whether the Latin interchange intersects the set.

In Chapter 8, when searching the 6×6 Latin squares for critical sets of size greater

than 18, Algorithm 3.1.1 was further speeded by ensuring that in each partial Latin

square examined, no row or column was full and no symbol occurred six times. Such

partial Latin squares cannot be critical sets as any entry may be removed from the

relevant row, column or set of symbols while maintaining the unique completion

property. As the partial Latin squares being tested become larger, this algorithm

runs comparatively more and more quickly; for example, for partial Latin squares

of size 21 it is several times faster than any other method.

3.2 Unique completion and Latin interchanges

Two key steps in the Algorithm 3.1.1 are discussed separately. The first is the step

which checks for unique completion, and the second, which must be completed prior

to running the algorithm, is determining the set of Latin interchanges.
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First, we give an algorithm which recursively fills all the blank cells in a partial

Latin square. It was used as part of Algorithm 3.1.1 to test whether a set is uniquely

completable, and is thus used in Chapters 4, 5, 6, 8, and to determine the results of

Appendices 1 and 2.

Algorithm 3.2.3 Checking for unique completion

• Input the partial Latin square P .

• Copy P to M .

Label 1

• Determine an empty position in M , (r, c).

• Determine the set E of all the symbols that it is possible to place in (r, c).

For each symbol e ∈ E in turn:

– Place the symbol e in M in position (r, c).

– If M is now complete, output M ; otherwise recursively jump to Label 1.

The empty position (r, c) in M may be determined by two different means. The

first is to simply proceed through M column by column and row by row, beginning

at position (0, 0). The second is to search for the position in the Latin square in

which the least number of alternatives is possible. That is, for each position in the

Latin square, we count the number of symbols which, if added to the partial Latin

square in that position, would result in an array which would not be a partial Latin

square. The position in which this number is greatest is chosen. Through extensive

testing, it was found that each alternative is suitable for different goals. When all

completions need to be generated, the first approach is better. However, given a

strong critical set which is being tested for unique completion, the second approach

will determine more quickly if only one completion is possible. The speed of the

algorithms is also affected by the density of the partial Latin square, that is, the

ratio of the number of entries to the number of cells.

The key part of Algorithm 3.1.1 is finding the Latin interchanges, and so the

next group of algorithms is for finding Latin interchanges of various sizes greater

than or equal to 4.
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If the Latin square contains a large number of intercalates (Latin interchanges

of size 4) we can considerably reduce the search space required to find critical sets.

The reason for this is that each critical set in the Latin square must contain at least

one of the four entries from the intercalate. Further improvements are possible if the

Latin square can be decomposed into disjoint intercalates. For example, suppose

we are searching for a critical set of size 9 in a 6× 6 Latin square where the square

can be decomposed into 9 disjoint intercalates. Then there are 49 = 262 144 cases

to examine, compared to

(
62

9

)
= 94 143 280 for the exhaustive search through all

the subsets of size 9.

Since the existence of intercalates can reduce the search size dramatically, we

give two algorithms for finding intercalates. There is an obvious O(n4) algorithm

and a less obvious O(n3) algorithm for finding these. These algorithms are given

below.

Algorithm 3.2.4 O(n4) algorithm for finding intercalates

• Input an n× n Latin square L.

• Generate the

(
n

2

)
pairs of row numbers r0 and r1, with 1 ≤ r0 < r1 ≤ n.

• Generate the

(
n

2

)
pairs of column numbers c0 and c1, with 1 ≤ c0 < c1 ≤ n.

• If Lr0c0 = Lr1c1 and Lr1c0 = Lr0c1 for any of the generated pairs of r0, r1, c0,

and c1, then an intercalate exists in these four positions.

Algorithm 3.2.5 O(n3) algorithm for finding intercalates

• Input an n× n Latin square L.

• For each symbol e, 1 ≤ e ≤ n, and for each column c, 1 ≤ c ≤ n, determine

in which row symbol e occurs in column c. Place this row number (f) in a

two-dimensional n× n array d such that d[c][e] = f , where Lfc = e.

• Consider each entry (r, c;Lrc) in the Latin square L with 1 ≤ r ≤ n, 1 ≤ c ≤ n.

For each such entry, consider all columns b such that c+ 1 ≤ b ≤ n.

• Determine where the symbol Lrb occurs in column c; that is, find d[c][Lrb].

Call this row number g.
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• If Lrc = Lgb then an intercalate exists in positions corresponding to the inter-

section of rows r and g with columns c and b.

We give an example of the application of this algorithm. Take the following

Latin square L = Z2
2.

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

L

We calculate the array d. We consider column c = 1 first. We proceed through

the symbols e = 1 up to e = 4. Since symbol 1 occurs in column 1 at position (1,1),

that is, in row 1, we assign the value 1 to d[1][1]. Since symbol 2 occurs in column

1 at position (2,1), that is, in row 2, we assign the value 2 to d[1][2]. We proceed

through all n2 different entries in L.

Next, we consider each entry in L. Start at row r = 1 and column c = 1. Then,

consider column b = 2.

We determine where the symbol L12 = 2 occurs in column 1. This row number

is contained in the array d at d[1][2]. The answer is g = 2.

Then, the last step says that if Lrc = Lgb, an intercalate exists at the intersections

of rows r and g with columns b and c. Since L11 = L22 = 2, we have an intercalate

at positions (1, 1), (1, 2), (2, 1) and (2, 2). Also, the algorithm runs in O(n3) time, as

filling the array d takes n2 steps and the determination of the intercalates requires

O(n) steps for each of the n2 entries in the Latin square.

The complexity of the search for Latin interchanges which are not intercalates

is much higher. Thus, when using Algorithm 3.1.1, the best idea is to restrict the

search space as much as possible initially, by using smaller interchanges such as

intercalates. For instance, suppose a Latin square of order 6 can be decomposed

into four 3 × 3 subsquares, and we are searching for a critical set of size 9. Then

each 3 × 3 subsquare must contain a uniquely completable set for that subsquare.

So each subsquare must contain at least two entries. In fact three of the subsquares

must contain two entries and the fourth must contain three. There are nine UC sets
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Table 3.1: Number of subsets to be examined using various search methods in

6× 6 Latin squares

Size of subset Exhaustive 2× 2 3× 3

9 94 143 280 262 144 218 700

10 254 186 856 3 538 944 3 101 166

11 600 805 296 23 592 960 24 740 316

12 1 251 677 700 103 219 200 125 331 705

13 2 310 789 600 332 365 824 439 425 648

14 3 796 297 200 837 697 536 1 149 328 764

15 5 567 902 560 1 716 436 992 2 366 815 464

16 7 307 872 110 2 932 162 560 3 982 863 312

17 8 597 496 600 4 250 133 504 5 620 113 720

18 9 075 135 300 5 293 364 736 6 771 725 820

19 8 597 496 600 5 716 214 784 7 057 334 304

20 7 307 872 110 5 386 735 872 6 419 253 726

21 5 567 902 560 4 449 137 664 5 127 197 616

of size two for any 3 × 3 subsquare and 75 UC sets of size three. Thus, there are

93×75×4 = 218 700 possibilities which must be examined, compared to 49 = 262 144

when using 9 disjoint intercalates. For sizes greater than 10, however, this method

is slower than using the intercalates. For various sizes of subsets in 6 × 6 Latin

squares, Table 3.1 lists the number of cases which need to be considered with an

exhaustive search, and when the Latin square can be decomposed into nine disjoint

2× 2 Latin subsquares or four disjoint 3× 3 Latin subsquares.

In the search for a critical set of order 8 and size 17 (see Chapter 6), all 8 × 8

main classes of Latin squares with 4 × 4 subsquares were generated, and then all

possible 4 × 4 UC sets were placed in the subsquares. In a similar effort, all 8 × 8

main classes of Latin squares with 16 disjoint intercalates were found, and potential

critical sets were generated by taking one entry from each intercalate and then one

entry from somewhere else in the complete Latin square. These efforts showed that

34



Table 3.2: Number of intercalates in all main classes of 8× 8 Latin squares

#MC #I #MC #I #MC #I #MC #I #MC #I #MC #I

3 0 23206 11 6273 21 211 31 1 41 2 51

14 1 26212 12 5002 22 255 32 24 42 9 52

66 2 26840 13 3094 23 79 33 12 43 14 56

265 3 26797 14 2609 24 123 34 27 44 1 60

758 4 24225 15 1532 25 67 35 5 45 12 64

1830 5 21535 16 1265 26 113 36 5 46 1 68

3893 6 18020 17 699 27 25 37 3 47 1 72

6587 7 14747 18 748 28 58 38 34 48 2 80

10583 8 11241 19 340 29 21 39 1 49 1 88

15073 9 8905 20 350 30 75 40 2 50 1 112

19760 10

no critical set of size 17 could exist in any of these main classes of Latin squares.

Table 3.2 shows the possible numbers of intercalates in 8× 8 Latin squares, and the

number of main classes which contain that number of intercalates. In each pair of

columns, the first number (#MC) is the number of main classes, with the number

of intercalates given in the second column (#I).

However, at times it is necessary to search for Latin interchanges of size greater

than four.

An algorithm for finding Latin interchanges had been given previously by Howse

[39] which determined Latin interchanges of size up to 11 in a given Latin square. I

independently developed a new algorithm (Algorithm 3.2.6) which worked for Latin

interchanges of any size and was used in Chapter 7 in the process of decomposing

partial Latin squares. In addition, for the results of Chapters 6 and 8, it was

necessary to determine how and when the Latin interchanges should be used for

maximum efficiency.
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Algorithm 3.2.6 Searching for Latin interchanges of general size m, m > 4

• Input the n× n Latin square L.

• Generate all bm
2
c × bm

2
c subarrays of L.

• For each subarray S, generate all subsets U of size m.

• Calculate all permutations of size x of the symbols {1, 2, . . . , bm
2
c} with no

fixed points, where 2 ≤ x ≤ bm
2
c.

• Determine the size of each row and column in the subset U , and the number of

times each symbol occurs in the subset U . If each of these numbers is greater

than or equal to 2, continue; else move to the next subset.

• Apply each of the permutations calculated above to each of the rows in each

subset U . If the columns are mutually balanced then a Latin interchange has

been found.

For Latin squares of order 10 or more, an optimization of this algorithm is

possible. For these sizes of Latin squares, it is sometimes faster to apply the pre-

calculated permutations to the columns rather than the rows. For example, if a

Latin interchange consists of five columns of two entries each, occurring in two rows

of five entries, it is much faster to examine all permutations of the columns than

to examine all permutations of the rows. The faster method requires calculating

the number of permutations required using both methods and determining whether

there are more permutations which can be applied to the rows or the columns. This

is followed by the test for mutually balanced columns or rows, accordingly.

3.3 Critical sets with a given property

Sometimes we are specifically interested in determining critical sets with a given

property.

The next algorithm (Algorithm 3.3.7) involves beginning with a complete Latin

square and ‘intelligently’ removing entries while maintaining the critical set property.

This method is used for finding examples of critical sets of a given size and is thus
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not generally suitable for determining all critical sets of a given size. It was used to

extend the spectrum of known critical set sizes in Latin squares of orders 9 and 10

which are shown in Appendix 1.

This algorithm has been especially successful in demonstrating the existence of

many critical sets of order 7 and size 25. The results of Chapter 4 and especially the

conjectures and questions in its conclusion are the result of many computer searches

for large critical sets of order greater than 5.

Algorithm 3.3.7 Finding critical sets with a given property

• Input an n× n Latin square L.

• Input a property R.

• Copy L into P .

• Determine if there exists an entry (x, y; z) in P such that it both meets property

R and has the property that L \ {(x, y; z)} has unique completion.

• If there are no such entries, output P and stop, otherwise remove (x, y; z) from

P and repeat the last step.

The entry removed can be the first one reached (beginning at the top left of

the Latin square and moving down and to the right) the removal of which does not

destroy the critical set property. Alternatively, it can be the entry where the value

of xi,j(P ) is lowest or highest. (Recall that xi,j(P ) is the number of different symbols

in row i and column j in a partial Latin square P .) Of course, where the value of

xi,j(P ) is n, the entry at position (i, j) can always be removed and the result will

still be a uniquely completable set. This led to the idea of attempting to remove

the entry at position (i, j) where the value of xi,j(P ) is the highest. This proved to

be effective in practice, as did, paradoxically, removing the entry at (i, j) where the

value of xi,j(P ) was lowest. This idea led to the generation of the critical sets given

in Appendix 1, which improved on the examples of Curran and van Rees [21], being

the largest known critical sets for the given orders.

As will be seen in Chapter 4, removing a row, column and symbol from the

complete square before beginning the search is a good idea when searching for large
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critical sets. We comment on the results of this idea further for the 7 × 7 Latin

squares.

For each of the 147 main classes of 7 × 7 Latin squares, we considered all 73

triples of (row, column, symbol) and removed all entries in the row and column and

all occurrences of the symbol. This left partial Latin squares of size 72−3×7 + 2 or

72− 3× 7 + 3, that is, 30 or 31. All subsets of size 25 in these partial Latin squares

were tested to see if any were critical sets.

In the examination of the Latin square corresponding to the Steiner triple system

of order 7, 11 592 critical sets of size 25 were found. Also, critical sets of size 25

were found in 113 out of a total of 147 main classes of 7× 7 Latin squares. Further

experimentation by removing all 3 × 72 pairs of (row,column), (row,symbol), and

(column,symbol) led to the discovery of a total of 29 484 critical sets in the Latin

square corresponding to STS(7).

Given the fact that only one critical set of size 25 was known [46] prior to the

discovery of this technique, it is obvious that the discoveries of Chapter 4 have

proved very useful in locating large critical sets in Latin squares of order greater

than 6. For example, the size of the largest known critical set in a Latin square of

order 9 was increased from 39 to 44, and in a Latin square of order 10, from 55 to

57.

Using all six conjugates of the Latin square being examined provides a larger

search space. Allowing for slight random variations (that is, using a different prop-

erty at random steps in the search) on the highest and lowest xi,j(P ), or picking a

position at random where xi,j(P ) is highest or lowest, extends the space still more.

The reason for this is that the output will consist of a greater variety of critical sets

when some random variations are allowed, more so than when following a fixed set

of steps.

We may be searching for a critical set of largest possible size, that is lcs(n).

In this case, the best squares to begin with seem to be n × n squares with I(n)

intercalates, as proposed in Chapter 4. On the other hand, if critical sets of small size

are required, back circulant Latin squares or Latin squares with fewer intercalates

seem to be a better starting point. The reason underlying this is that any critical set

in an intercalate-rich Latin square must intersect large numbers of intercalates, and
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should therefore be larger. Also, as we have seen, it is easier to count intercalates

than Latin interchanges of any other size, and thus it is easier to locate Latin squares

with many intercalates, as opposed to Latin squares with many interchanges of size

greater than 4. Conversely, intercalate-poor Latin squares are good places to look

for small critical sets. Also, it has been found that the smallest critical sets occur

only in the back-circulant Latin squares for orders from 1 to 7. [4]

With this in mind we give Algorithm 3.5.9 for finding Latin squares which

have many intercalates. First, we need to define an algorithm which calculates

all transversals in a given Latin square.

3.4 Discovering transversals in a Latin square

This algorithm will be used as part of the next algorithm to prolong given Latin

squares.

Algorithm 3.4.8 Finding all transversals in a Latin square L

• Input an n× n Latin square L.

• Initialise the size n arrays cols and syms.

• Call findtransversal(L,0,cols,syms).

The function findtransversal(L,r,cols,syms):

• If r = n, we have a transversal in L, in the entries {(i, cols[i]; syms[i]) | 0 ≤

i ≤ n− 1}. Output it and continue.

• Otherwise, for each column j, 0 ≤ j ≤ n− 1, set flag = 0;

• For each row i, 0 ≤ i ≤ n− 1,

- If syms[i] = Lrj or cols[i] = j, set flag = 1.

• If flag = 0, set cols[r] = j, syms[r] = Lrj, and call findtransversal(L,r +

1,cols,syms).

39



3.5 Algorithm for finding Latin squares with many

intercalates

Algorithm 3.5.9 Finding Latin squares with many intercalates

• Generate as many different main classes of order n Latin squares as possible.

• Determine all the transversals in each of these Latin squares.

• Prolong each of the Latin squares along all possible transversals as in [22], to

generate (n+ 1)× (n+ 1) Latin squares.

A similar idea was used independently in Danziger and Mendelsohn [22] and

Heinrich and Wallis [38].

This leads to discovering the n × n Latin squares with the currently known

maximum number of intercalates for n = 9 and 11. This 11 × 11 Latin square is

presented with a corresponding large critical set in Chapter 5.

There are several other ways to reduce the search space and still determine

intercalate-rich Latin squares. All of the following methods reduce the search space,

which leads to discovering intercalate-rich Latin squares more quickly. Some of these

ideas can also be combined.

• Start with a reduced partial Latin square and find all completions.

• Enforce symmetry in the completions. That is, when adding an entry (x, y; z),

add the entry (y, x; z) also.

• Enforce total symmetry in the completions, as defined in [5]. That is, when

adding an entry (x, y; z), add the entries (y, x; z), (y, z;x), (x, z; y), (z, x; y),

and (z, y;x) also.

• Begin with a partial Latin square containing just ones along the main diagonal.

This was originally suggested in [38].

Finally, placing Latin subsquares in a partial Latin square and then using some

combination of the above has also proved a useful approach. For the subsquares,

either group tables or the subsquare with the most intercalates may be used. Some of
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these approaches led to the discovery of a 10×10 Latin square with 117 intercalates,

which is the Latin square from which the largest known critical set of order 10 is

drawn. This critical set is shown in Appendix 1. Also, the results of some of these

ideas were used to construct the Latin squares from which the critical sets of order

9 given in Appendix 1 were derived.

3.6 Finding critical sets similar to a given critical

set

At times we may try to generate a critical set with a given property by starting with

a similar critical set and adapting it. For instance, the critical set of order 8 and

size 17 in Chapter 6 was discovered by starting with a critical set of order 8 and size

16, and looking at all possible ways of removing two entries and then adding three.

The following algorithm takes a critical set C and attempts to create new critical

sets which vary in size from C by a small number of entries. The idea is to input

two numbers x and y, and look at all possible ways to remove x entries and add y

other entries. Each resulting partial Latin square P is tested to see whether it is a

critical set.

Algorithm 3.6.10 Finding critical sets close to a given critical set

• Input a critical set C of size m for an n× n Latin square L.

• Input x, the number of entries to be removed, and y, the number of entries to

be added.

• Generate all

(
m

x

)
subsets of C which are of size x and place them in an array

Cx.

• For each x-sized subset X in Cx, remove X from C, creating EX .

• Generate all

(
m

y

)
subsets of C which are of size y and place them in an array

Xy.

• For each y-sized subset Y in Xy such that X ∩ Y = ∅, add Y to EX .

• Determine whether EX is a critical set.
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3.7 A suggestion of Brendan McKay

In a search for the maximum number of intercalates in a 9 × 9 Latin square,

McKay [55] proposed beginning with three intercalates in the first two rows and

extending the square one row at a time, maximizing the number of intercalates at

each stage. I wrote a program to determine whether this idea was effective. This

only led to a Latin square of order 9 containing 49 intercalates. However, Owens

and Preece in [59] had already discovered I(9) ≥ 72.

3.8 Parallel Algorithms

Many of the algorithms presented in this chapter can be parallelised; that is, a single

problem may be split up and the sub-problems run on different computers. We give

two examples of this.

Splitting up a problem proved very useful in the case of finding large critical sets

in the main class of 6× 6 Latin squares with no intercalates. This Latin square can

be partitioned into 3 × 3 subsquares. Thus, in the search for a critical set of size

17, we split the search up so that one computer was attempting to put 5, 4, 3 and

5 entries in each subsquare respectively while another computer was attempting to

put 4, 7, 4 and 2 entries into each subsquare. In total there were 204 cases, which

were split across five computers running the Linux operating system. This enabled

us to calculate some of the results in Chapter 8 more quickly than any other method.

Using one computer would have been very slow, and the basic Algorithm 3.1.1 would

not have worked well for a Latin square with no intercalates.

In the case of the search for a critical set of order 8 and size 17 in Latin squares

with precisely sixteen intercalates (related to Chapter 6), a count was maintained

of the number of subsets examined. This simple approach enabled each search to

be split across eight nodes of an SGI Power Challenge computer, which reduced the

execution time considerably.
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3.9 Finding a small set of Latin interchanges sat-

isfying a property

There are 150 Latin interchanges of size 8 in the back-circulant Latin square of order

5. As it has never been proven that the minimal critical set in a back-circulant Latin

square of order n has size bn
2

4
c, we decided to take a close look at the subsets of

size b5
2

4
c − 1 = 5 in BC5.

In BC3, the minimal size of a critical set is 2. The size of the smallest Latin inter-

change in BC3 is 6, and there are nine such Latin interchanges. We need only three of

these interchanges to prove that every subset of size b3
2

4
c−1 = 1 in BC3 is not a crit-

ical set. That is, if X3 = {I1, I2, I3} where I1 = {(0, 0; 0), (0, 1; 1), (0, 2; 2), (1, 0; 1),

(1, 1; 2), (1, 2; 0)}, I2 = {(0, 0; 0), (0, 1; 1), (0, 2; 2), (2, 0; 2), (2, 1; 0), (2, 2; 1)}, and I3

= {(1, 0; 1), (1, 1; 2), (1, 2; 0), (2, 0; 2), (2, 1; 0), (2, 2; 1)}, then for every subset U ∈

BC3 such that |U | = 1, there exists V ∈ X3 such that V ∩ U = ∅.

This algorithm attempts to find a set X5 (called seq in the algorithm) containing

Latin interchanges of size 8 from BC5 such that for every subset U ∈ BC5 where

|U | = 5, there exists V ∈ X5 such that V ∩ U = ∅. The smallest such set of Latin

interchanges found has been of size 41.

Algorithm 3.9.11 Find a subset of 150 interchanges satisfying the above property

• Input I, the 150 Latin interchanges of size 8 in BC5.

• Turn each Latin interchange into a bitmap (25 bits).

• Initialise the array of Latin interchanges seq of size 150 and set len = 0.

• Call callseq(seq,len).

The function callseq(seq,len):

• For each I ∈ I such that I 6∈ seq:

- Let count = the number of subsets of size 5 in BC5, represented as bitmaps,

that do not intersect any of the interchanges in seq ∪ I.

• If count = 0 for any I, print seq and continue.
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• Otherwise, for the I ∈ I where count is a minimum, let seq = seq ∪ I,

len = len+ 1, and callseq(seq,len).

Variations on this algorithm, for instance by replacing the test for where count

is a minimum with a test which ensures that the Latin interchanges are evenly

distributed over the Latin square, have been attempted without much success.

3.10 Near-strong critical sets

This algorithm takes a critical set C and tests if it is near-strong. It is an extremely

complex algorithm and the order of the heavily nested for loops is critical to the

correct operation of the algorithm.

The basic idea is to simulate the union of sets of symbols by setting bits in a

binary string to represent the presence of symbols in their union, and then counting

them or testing for the presence of a particular symbol at the end of a loop.

For each empty position (i, j) under consideration in the array of alternatives for

the partial Latin square P , AP , we need to determine whether a symbol k ∈ AP (i, j)

is forced out. We do this by determining if there exists a g, 1 ≤ g ≤ n such that

(1) there exist distinct i1, . . . , ig (all 6= i) with k′ ∈ (i1, j)AP ∪ · · · ∪ (ig, j)AP and

|(i1, j)AP ∪ · · · ∪ (ig, j)AP | = g, or there exist distinct j1, . . . , jg (all 6= j) with

k′ ∈ (i, j1)AP ∪ · · · ∪ (i, jg)AP and |(i, j1)AP ∪ · · · ∪ (i, jg)AP | = g; or

(2) θ(i, j, k′) satisfies 1 in APθ(1,2,3) for θ = (2 3) or θ = (1 3).

This is equivalent to the definition of a symbol “forced out” of an array of alternatives

given in Chapter 2.

Obviously the definition of a near-strong critical set relies heavily on the use of

unions of sets and so the use of binary strings will be important in the following

algorithm.

Also, the algorithm for picking g objects from n objects is taken from a program

on the World Wide Web by Rhoads [62], which is based on code from Reingold,

Nievergelt, and Deo [61].

Algorithm 3.10.12 Testing whether a critical set C is near-strong
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• Input the critical set C based on the symbol set N = {0, . . . , n− 1}

• Copy C to P .

• Repeat the following until no more entries can be added to P :

- Call the function force(P ) to generate the n × n array of binary strings A

corresponding to the reduced array of alternatives for P , RAP .

- If any binary string A[i][j] has exactly one bit x set, add the entry (i, j;x) to

P .

- If in row i or column j of A, the binary string A[i][j] has bit x set and no

other binary string in row i or column j of A, respectively, has bit x set, add

the entry (i, j;x) to P .

- Call the function force(P(1,3,2)) to generate the n×n array of binary strings A

corresponding to the reduced array of alternatives for P(1,3,2), RAP(1,3,2)
.

- If any binary string A[i][j] has exactly one bit x set, add the entry (i, x; j) to

P .

- If in row i or column j of A, the binary string A[i][j] has bit x set and no

other binary string in row i or column j of A, respectively, has bit x set, add

the entry (i, x; j) to P .

- Call the function force(P(3,2,1)) to generate the n×n array of binary strings A

corresponding to the reduced array of alternatives for P(3,2,1), RAP(3,2,1)
.

- If any binary string A[i][j] has exactly one bit x set, add the entry (x, j; i) to

P .

- If in row i or column j of A, the binary string A[i][j] has bit x set and no

other binary string in row i or column j of A, respectively, has bit x set, add

the entry (x, j; i) to P .

• Finally, if P is a complete Latin square, then C is near-strong.

The function force(P ):
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• For every empty position (i, j) in P :

- If |Ri ∪Cj| = n− 1, add the entry (i, j;N \ (Ri ∪Cj)) to P , and continue the

completion;

- Otherwise, generate the array of alternatives for P , represented by an n × n

array of binary strings, A, with bit x of the binary string A[i][j] set if and only

if x ∈ Ri ∪ Cj.

• Repeat the following until the array of alternatives A is unchanged; that is,

when A corresponds to the reduced array of alternatives for P .

- For every empty position (i, j) in P :

- For every symbol k′ which is a possibility at (i, j):

- For g from 1 to n:

- Pick g numbers c[1], . . . , c[g] from the numbers 0 to n− 1.

- Where c[x] 6= j and Pc[x]j is non-empty for all 1 ≤ x ≤ g, calculate u, the

binary string with bit y set if and only if the symbol y is contained in Pc[x]j

for some 1 ≤ x ≤ g.

- If bit k′ of u is set and the number of bits in u equals g, set bit k′ of A[i][j] to

0.

- Where c[x] 6= i and Pic[x] is non-empty for all 1 ≤ x ≤ g, calculate u, the

binary string with bit y set if and only if the symbol y is contained in Pic[x]

for some 1 ≤ x ≤ g.

- If bit k′ of u is set and the number of bits in u equals g, set bit k′ of A[i][j] to

0.

• Return the array A, corresponding to the reduced array of alternatives for P .
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Chapter 4

Largest critical sets in a Latin

square

In this chapter, we use the concept of xi,j(P ), the number of different symbols in

the intersection of row i and column j in a partial Latin square P , to prove a new

upper bound on lcs(n); that is, lcs(n) ≤ n2 − 3n + 3. Recall that lcs(n) is the size

of the largest critical set in an n× n Latin square.

4.1 The value of lcs(n) for small n

In Table 4.1 overleaf, the known values of lcs(n) are listed for small values of n. The

extra columns are to compare different bounds discussed subsequently in Section

4.3.

All bounds on lcs(n) given in column 2, expect for n = 5, 7, 9, and 10, are taken

from [27]. The current bounds for n = 5 and 7 were given by A. Khodkar [46]. In

Appendix 1, we give some examples for the largest known critical sets for n = 5, 7, 9,

and 10. The bound for n = 6 is given in Chapter 8, which is based on [1].

4.2 Non-critical sets

The following lemma is our main tool for improving the upper bound on lcs(n).

Lemma 4.2.2 Let C be a critical set for a Latin square L and assume that there

exists i such that |Ri(C)| = n− 1. Then the missing symbol in row i does not occur

47



Table 4.1: The sizes of the largest known critical sets of small order, with

conjectured bounds

n lcs(n) n2 − 3n+ 3 bn2 − n3/2c b(1− (3
4
)log2n)n2c

1 0 1 0 0

2 1 1 1 1

3 3 3 3 3

4 7 7 8 7

5 11 13 13 12

6 18 21 21 18

7 ≥ 25 31 30 27

8 ≥ 37 43 41 37

9 ≥ 44 57 54 48

10 ≥ 57 73 68 61

anywhere in C, and the column corresponding to the missing symbol is empty. That

is, if (i, j; k) ∈ L \ C, then |Cj(C)| = |Ek(C)| = 0.

Proof. Without loss of generality, let i = 1 and assume that C contains the entries

{(1, x;x)| 1 ≤ x ≤ n− 1} and that position (1, n) is empty.

By Lemma 1.1 part (2), for each x (1 ≤ x ≤ n−1) there exists a Latin interchange

Ix ⊆ L such that Ix ∩C = {(1, x;x)}. Since there is only one empty position in the

first row, it follows that {(1, x;x), (1, n;n)} ⊆ Ix. Now the Latin interchange Ix has

a disjoint mate, say I ′x. In this case since (1, x;n) ∈ I ′x, for some r, (r, x;n) ∈ Ix,

and since |Ix ∩C| = 1, (r, x;n) ∈ L \C. So symbol n does not occur in column x of

C. Since x ranges over all columns from 1 to n − 1, symbol n does not occur in C

at all. Therefore |En(C)| = 0.

Also we have (1, n;x) ∈ I ′x. Thus for some s, (s, n;x) ∈ Ix. Similarly we have

(s, n;x) 6∈ C; therefore no symbol apart from n may occur in column n in C, and

we have said that symbol n does not occur in column n either. Therefore column n

is empty. So |Cn(C)| = 0.

We can generalize Lemma 4.2.2 to the following.
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Lemma 4.2.3 Let C be a critical set for a Latin square L and assume that there

exists i, such that |Ri(C)| = n−m, where {(i, c1; e1), (i, c2; e2) . . . , (i, cm; em)} ⊆ L\C

and {(i, cm+1; em+1), . . . , (i, cn; en)} ⊆ C. Then we have

(1) In each of the columns cm+1, cm+2, . . . , cn in C, at least one of the symbols

e1, e2, . . . , em is missing. That is, for each x ∈ {cm+1, cm+2, . . . , cn}, there

exists a symbol y ∈ {e1, e2, . . . , em}, and a row r ∈ {1, 2, 3, . . . , n} \ {i} such

that (r, x; y) ∈ L \ C.

(2) For each symbol e ∈ {em+1, em+2, ..., en}, we have a column c ∈ {c1, c2, . . . , cm},

from which this symbol is missing.

Proof. (1) Without loss of generality we may assume that i = 1 and cj = ej = j, for

j = 1, 2, . . . , n. For each x ∈ {m+ 1,m+ 2, . . . , n}, there exists a Latin interchange

Ix such that Ix ⊆ L and Ix ∩C = {(1, x;x)}. So if I ′x is the disjoint mate of Ix then

there exists y ∈ {1, 2, . . . ,m} such that (1, x; y) ∈ I ′x, implying that there exists

r ∈ {2, . . . , n} such that (r, x; y) ∈ Ix. Since |Ix ∩ C| = 1, (r, x; y) ∈ L \ C.

(2) Similarly for each e ∈ {m + 1,m + 2, . . . , n}, there exists a Latin interchange

Ie such that Ie ⊆ L and Ie ∩ C = {(1, e; e)}. So if I ′e is the disjoint mate of Ie

then there exists c ∈ {1, 2, . . . ,m} such that (1, c; e) ∈ I ′e, implying that there exists

s ∈ {2, . . . , n} such that (s, c; e) ∈ Ie. Since |Ie ∩ C| = 1, (s, c; e) ∈ L \ C.

Theorem 4.2.1 If C is a uniquely completable partial Latin square of order n

completing to the Latin square L with |C| > n2 − 3n + 3, then C is not a critical

set.

Proof. We prove this result by contradiction. Suppose C is a critical set. Since a

critical set in a Latin square of order n cannot have n triples whose ith components

are the same (1 ≤ i ≤ 3) (see for example [21]), we can assume that any row or

column contains at most n− 1 symbols and any symbol occurs at most n− 1 times.

We have three cases to consider.

Case 1 There exists a row i such that |Ri(C)| = n−1. Assume that (i, j; k) ∈ L\C.

Then by Lemma 4.2.2, |Cj(C)| = |Ek(C)| = 0. Now if there exists j′ (j′ 6= j) such

that |Cj′(C)| = n − 1 and (i′, j′; k′) ∈ L \ C, then we have |Ri′(C)| = 0. These
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together imply that |C| ≤ n2 − (2n− 1)− (n− 2) = n2 − 3n+ 3. Otherwise for all

l, 1 ≤ l ≤ n, |Cl(C)| ≤ n− 2 and thus |C| ≤ n(n− 2)− (n− 2) = n2 − 3n+ 2.

Case 2 For all i (1 ≤ i ≤ n) we have |Ri(C)| ≤ n−3. Then |C| ≤ n(n−3) = n2−3n.

Case 3 For all i (1 ≤ i ≤ n) we have |Ri(C)| ≤ n−2 and there exists a row r such

that |Rr(C)| = n−2. And by contrast for all j (1 ≤ j ≤ n) we have |Cj(C)| ≤ n−2.

Assume that Rr(C) = {e3, e4, . . . , en}, and {(r, c1; e1), (r, c2; e2)} ⊂ L \ C. Then by

Lemma 4.2.3 each of the symbols e3, e4, . . . , en occurs at most once in columns c1 and

c2. This means |Cc1(C)|+ |Cc2(C)| ≤ n. Thus |C| ≤ n(n−2)−(n−4) = n2−3n+4.

We shall show that |C| = n2−3n+4 is also impossible. Proof of this fact is somewhat

involved and we need to introduce more notation.

First note that if we consider the conjugate of the Latin square L we may assume

that for all k (1 ≤ k ≤ n) we have |Ek(C)| ≤ n− 2. Let fk = n− 2− |Ek(C)|. We

have fk ≥ 0, for all k (1 ≤ k ≤ n) and

n∑
k=1

fk = n(n− 2)− |C| = n− 4.

For each position (i, j), 1 ≤ i, j ≤ n, we have xi,j(C) = |Ri(C) ∪ Cj(C)|. We have

(∗)
∑

1≤i,j≤n

xi,j(C) = n3 −
n∑
k=1

(n− |Ek(C)|)2.

In fact, for each position (i, j), 1 ≤ i, j ≤ n, we have xi,j(C) = n, except when

a symbol k is missing from both row i and column j in C. For each k we have

exactly (n − |Ek(C)|)2 such positions. They are the positions which are in the

(n− |Ek(C)|)× (n− |Ek(C)|) subsquare obtained from the n× n array by omitting

all the rows and columns containing symbol k in C. Each such position causes a

“−1” in the summation of the left hand side of (∗).

Note that since C is a critical set, for each position (i, j) ∈ L \ C, that is, for

each position in L in which C is empty, we have xi,j(C) ≤ n − 1. Recall that the

shape of a partial Latin square P is S(P ) = {(i, j) | (i, j; k) ∈ P}. Thus

1

|C|
∑

(i,j)∈C

xi,j(C) =
1

|C|

(
(n3 −

n∑
k=1

(n− |Ek(C)|)2)−
∑

(i,j)∈S(L\C)

xi,j(C)
)

≥ 1

n2 − 3n+ 4

(
(n3 −

n∑
k=1

(fk + 2)2)− (3n− 4)(n− 1)
)

=
1

n2 − 3n+ 4
(n3 − 3n2 − n+ 12−

n∑
k=1

f 2
k ).
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Since
n∑
k=1

f 2
k ≤ (

n∑
k=1

fk)
2 = (n− 4)2, it follows that

1

|C|
∑

(i,j)∈S(C)

xi,j(C) ≥ n3 − 3n2 − n+ 12− (n− 4)2

n2 − 3n+ 4
= n− 1.

This implies that, either

(i) for some position (i, j) ∈ S(C) we have xi,j(C) > n− 1; or

(ii) for all (i, j) ∈ S(C), xi,j(C) = n− 1.

The first case is contradictory with C being a critical set. In the second case if we

remove an entry (a, b; e) ∈ C and let C ′ = C \ {(a, b, e)}, then we have

• xa,b(C ′) = n−2 and xa,j(C
′), xi,b(C

′) ≤ n−1, for all (a, j) and (i, b) ∈ S(C ′);

and

• xi,j(C ′) = n− 1; otherwise.

But if case (ii) holds, then all of the inequalities that we have above must be

equalities, and this implies that for every (i, j) 6∈ S(C), we have xi,j(C) = n−1. This

follows because we have used the inequality xi,j(C) ≤ n−1, where (i, j) ∈ S(L\C).

So C ′ can be completed to L, first by completing any position not in the row a or

column b, then the positions of row a and column b. This is a contradiction.

4.3 Conjectures and Questions

The study of lower bounds on lcs(n) has been examined by many researchers. While

the work presented in this thesis improves on this bound, it does not settle the open

problem of what the exact value of lcs(n) is. Here we list some conjectures and

questions which arise from this research.

Conjecture 4.3.1 lcs(n) ≤ n2 − n3/2.

This is motivated by the proof of Theorem 4.2.1. It is analogous to a similar con-

jecture made by Branković, Horák, Miller, and Rosa, in [11], concerning the size of

the largest premature partial Latin square.
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Conjecture 4.3.2 lcs(n) ≤ (1− (3
4
)log2n)n2.

This is true for the current known values of lcs(n). (That is, 1 ≤ n ≤ 17.) It implies

that lcs(2n) = 4n − 3n.

This conjecture is based on Stinson and van Rees’s result in [67] that lcs(2n)

≥ 4n−3n. We postulate that this is an equality. Below in Questions 4.3.2 and 4.3.3,

we ask how I(n), the maximum number of intercalates in an n × n Latin square,

and lcs(n) are related. This conjecture assumes that as the value of I(n) reaches a

theoretical maximum when n is a power of 2, so too does the value of lcs(n).

Question 4.3.1 Where C is a critical set of order n and of size lcs(n), do there

exist i, j, k, 1 ≤ i, j, k ≤ n, such that |Ri(C)| = |Cj(C)| = |Ek(C)| = 0? That is,

is there always an empty row, an empty column, and a missing symbol in a critical

set of size lcs(n)?

Evidence for the “yes” case in Question 4.3.1 is that every example in Stinson and

van Rees [67], and in Donovan [27] where critical sets of largest known size are

given, have this property. Also, every critical set of largest size in Latin squares of

orders 1 to 6 has this property. Additionally, all of the largest known critical sets in

Latin squares of orders from 8 and 9 have this property.

All the constructions for large critical sets given in articles such as [26], [33], [57]

and [67] have this property. However, the example of a critical set of largest known

size in a Latin square of order 10, given in Appendix 1, does not have this property.

Also, as we found in Chapter 3, there are many critical sets of order 7 and size 25

from the Latin square corresponding to STS(7) which do not have this property.

Question 4.3.2 Where C is a critical set for the Latin square L of order n and

size lcs(n), does L have I(n) intercalates?

Question 4.3.3 Where L is a Latin square of order n with I(n) intercalates, does

L contain a critical set C of size lcs(n)?

In what follows, we examine evidence for and against both of these questions.

Evidence for the “yes” case in both of these questions is that all of the largest

known critical sets in Latin squares of orders 1 to 6 and 8 have the property that

they occur in Latin squares with the largest known number of intercalates.

52



Also, for each order of Latin square n, 1 ≤ n ≤ 6, the largest critical set of order

n occurs only in the Latin square with I(n) intercalates.

The original construction for a critical set of size
n2 − n

2
, given by Nelder [57],

is in the back-circulant Latin square of order n. However, apart from this construc-

tion, all known constructions for large critical sets complete to Latin squares which

provide lower bounds for I(n) in [38], as shown in this list.

• lcs(2m) ≥ 4m − 3m, [67]. The completion of this critical set is isomorphic to

the Latin square in [38] with I(2m) =
4m(2m − 1)

4
intercalates.

• lcs(2m−1) ≥ 4n−3n−2n+1 +3, [33]. The completion of this critical set is iso-

morphic to the Latin square in [38] with I(2m−1) =
(2m − 1)(2m − 2)(2m − 4)

4
intercalates.

• lcs(2m) ≥ 5m2 − 3m

2
, [26]. The completion of this critical set is isomorphic

to the Latin square in [38] with m3 intercalates, which demonstrated that

I(2m) ≥ m3. In the next chapter, the completion of this critical set is denoted

by L2 and the Latin square in [38] is denoted by L1, and we find that L−11 = L2.

As the number of intercalates in a Latin square increases, any critical set in such

a Latin square must intersect an increasing number of intercalates. Therefore, it

seems reasonable to assume that, in general, such critical sets would grow in size.

A “yes” answer for Question 4.3.3 would fit in with this expectation.

We now examine the evidence for the “no” case. The largest known critical set

of order 9 does not come from a Latin square with I(9) intercalates, since all known

examples of this size are derived from Latin squares with 53 or 54 intercalates, and

yet Heinrich and Wallis [38] found I(9) ≥ 64 and more recently the author of this

thesis found I(9) ≥ 72, which had been independently discovered by Owens and

Preece [59].

Also, the largest known critical set of order 10 comes from a Latin square with 117

intercalates, but Heinrich and Wallis [38] found I(10) ≥ 125. No critical set of size

greater than 55 has been found in the order 10 Latin square with 125 intercalates.

Additionally, there are at least 113 (out of 147) main classes of 7×7 Latin squares

which contain a critical set of size 25.
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4.4 Conclusion

In this chapter we have developed a new upper bound on lcs(n) which has improved

considerably the bound given by Curran and van Rees in [21]. We also speculated

on the evidence given in a multitude of papers which links constructions for large

critical sets and the classic paper on the maximum number of intercalates in a Latin

square. Such links have not been made before. Additional observations about the

nature of published large critical sets and a large amount of data about large critical

sets led to further conjectures and questions, for which there is conflicting evidence.

In the last chapter of this thesis, we use the new upper bound on lcs(n) to

calculate the value of lcs(6) more quickly. In the next chapter, we provide more

evidence for the close link between Latin squares with large numbers of intercalates

and large critical sets in these Latin squares.
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Chapter 5

New constructions for

intercalate-rich Latin squares and

their large critical sets

There are two well-known papers giving bounds on the value of I(n), the maximum

number of intercalates in an n×n Latin square. The first is by Heinrich and Wallis

[38] (1980) and the second is by Kotzig and Zaks [48] (1983). This chapter gives

new bounds on the values of I(2αm) and I(2αm + 1) when α ≥ 2 (α 6= 3 in the

I(2αm+ 1) case) and m is odd, by constructing the relevant Latin squares of orders

2αm and 2αm+ 1.

Heinrich and Wallis proved that I(2αm) ≥ (2αm)2(2αm + 2α − 2)/8, for α ≥ 1

and m odd. We shall show that I(2αm) ≥ (2αm)2(3m.2α + 2α − 4)/16, for α ≥ 2

and m odd. This is an improvement because the Latin square constructed in this

chapter contains an extra (2αm)2(2αm− 2α)/16 intercalates.

Also, by using the technique of prolonging a transversal, (defined in Chapter

2), in the Latin square of order 2αm, Heinrich and Wallis found I(2αm + 1) ≥

2αm(2αm(2αm + 2α − 10)/8 + m + 1) + 2α−1m(m − 1), for α ≥ 2 and m odd. By

prolonging a different transversal in our newly constructed square of order 2αm, we

shall show that I(2αm+1) ≥ 2αm(2αm(3.2αm+2α−20)/16+m+1)+2α−1m(m−1),

for α = 2 or α ≥ 4 and m odd. The Latin square constructed in this chapter also

contains an extra (2αm)2(2αm− 2α)/16 intercalates.

Both of these bounds are greater than the Heinrich and Wallis bound, and rep-
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resent significant improvements.

We noted in the previous chapter that all except one of the constructions for

the largest known critical sets complete to Latin squares which are isomorphic to

those given in Heinrich and Wallis’s paper. By combining constructions for critical

sets mentioned in Donovan and Cooper [28], together with the above mentioned

construction for a Latin square of order 2αm, we can find a new lower bound for

lcs(4m), for m any positive integer. We also give a construction for an 11×11 Latin

square with a record number of intercalates, and we comment on critical sets from

intercalate-rich 14× 14 Latin squares.

The discoveries of this 11× 11 Latin square with 172 intercalates and a 12× 12

Latin square with 324 intercalates were a result of joint work with Ian Wanless.

The generalization of this 12 × 12 Latin square to derive a new bound for I(2αm),

the construction giving the new bound for I(2αm + 1), and the new critical set

construction giving a new bound for lcs(4m), are all new and original work, by the

author of this thesis.

5.1 Background

The rest of this chapter will involve the concatenation of Latin squares and partial

Latin squares to form larger Latin and partial Latin squares, in order to create new

bounds on the maximum number of intercalates in Latin squares of order 2αm, m

odd and α ≥ 2, and the size of critical sets in such Latin squares. We define new

notation to clarify this process.

For a partial Latin square P of order m, define

S(P, x, y, z) = {(xm+ i, ym+ j; zm+ Pij) | (i, j; k) ∈ P}

In this chapter, we number from zero to n−1 for the rows, columns and symbols

in a Latin square of order n, as it is more convenient for the frequent modulo n

arithmetic which is used.

Heinrich and Wallis gave the following construction for a Latin square L1 of order

2m, m odd, with at least m3 intercalates. For L1 and the subsequent constructions

we shall demonstrate that there are exactly m3 intercalates.
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Let A = {(i, j; (i − j) (mod m)) | 0 ≤ i, j ≤ m − 1} and B = {(i, j; (i +

j) (mod m)) | 0 ≤ i, j ≤ m − 1}. Then if we re-order the columns of A in the

order: column 0, column m− 1, column m− 2, . . . , column 1, the result is B. That

is, for all 0 ≤ i, j ≤ m − 1, the entry (i, j; (i − j) (mod m)) in A gets mapped to

(i, (m − j) (mod m); (i − j) (mod m)) = (i, k; (i + k) (mod m)) in B, where k =

(m− j) (mod m). Thus A and B are isotopic.

Recall from Chapter 2 that Mn denotes the Latin square M of order m with nm

added to each of the symbols. We denote the transpose of M by MT . Then L1 can

be diagrammatically represented as follows.

A0 B1

B1 A0

L1

Thus L1 = S(A, 0, 0, 0) ∪ S(B, 0, 1, 1) ∪ S(B, 1, 0, 1) ∪ S(A, 1, 1, 0).

We wish to prove that there exist m3 intercalates in L1.

For any i, j ∈ {0, 1, . . . ,m − 1}, (i, j; (i − j) (mod m)) ∈ S(A, 0, 0, 0), and for

any l ∈ {0, 1, . . . ,m− 1}, (i, l +m; (i+ l) (mod m) +m) ∈ S(B, 0, 1, 1).

In addition, ((i+ l − j) (mod m) +m, j; (i+ l) (mod m) +m) ∈ S(B, 1, 0, 1).

We need to show that

((i+ l − j) (mod m) +m, l +m; ((i+ l − j)− l) (mod m))

= ((i+ l − j) (mod m) +m, l +m; (i− j) (mod m))

which it obviously does.

So

I1 = {(i, j; (i− j) (mod m)), (i, l +m; (i+ l) (mod m) +m),

((i− j + l) (mod m) +m, j; (i+ l) (mod m) +m),

((i− j + l) (mod m) +m, l +m; (i− j) (mod m)) |

0 ≤ i, j, l ≤ m− 1}

is an intercalate.

Since m is odd, B contains no intercalates [13] and since A is isomorphic to B,

A contains no intercalates either. Every pair of entries (i, j; i− j) and (i, l+m; (i+
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l) (mod m) + m) of L1 where 0 ≤ i, j, l ≤ m − 1 is contained in an intercalate.

Therefore there are exactly m3 intercalates in L1. Similar arguments will apply to

L2, L3, L4, L5 and L6 below.

We define L2, L3, L4, L5 and L6, respectively, as follows:

A0 (A1)T

A1 (A0)T

(A0)T (A1)T

A1 A0

(A0)T A1

(A1)T A0

A0 A1

(A1)T (A0)T

(A0)T B1

B1 (A0)T

L2 L3 L4 L5 L6

Thus

L2 = S(A, 0, 0, 0) ∪ S(AT , 0, 1, 1) ∪ S(A, 1, 0, 1) ∪ S(AT , 1, 1, 0),

L3 = S(AT , 0, 0, 0) ∪ S(AT , 0, 1, 1) ∪ S(A, 1, 0, 1) ∪ S(A, 1, 1, 0),

L4 = S(AT , 0, 0, 0) ∪ S(A, 0, 1, 1) ∪ S(AT , 1, 0, 1) ∪ S(A, 1, 1, 0),

L5 = S(A, 0, 0, 0) ∪ S(A, 0, 1, 1) ∪ S(AT , 1, 0, 1) ∪ S(AT , 1, 1, 0) and

L6 = S(AT , 0, 0, 0) ∪ S(B, 0, 1, 1) ∪ S(B, 1, 0, 1) ∪ S(AT , 1, 1, 0).

There exist m3 intercalates in each of L2, L3, L4, L5, and L6.

To prove that L2 contains m3 intercalates we proceed as before. For any i, j ∈

{0, 1, . . . ,m− 1}, (i, j; (i− j) (mod m)) ∈ S(A, 0, 0, 0).

Then take any l ∈ {0, 1, . . . ,m−1}, (i, l+m; (l−i) (mod m)+m) ∈ S(AT , 0, 1, 1)

and ((l − i+ j) (mod m) +m, j; (l − i) (mod m) +m) ∈ S(A, 1, 0, 1).

Now we need to check that

((l − i+ j) (mod m) +m, l +m; (l − (l − i+ j)) (mod m))

= ((l − i+ j) (mod m) +m, l +m; (i− j) (mod m))

which it obviously does.

Thus there exist m3 intercalates in L2 of the form:

I2 = {(i, j; (i− j) (mod m)), (i, l +m; (l − i) (mod m) +m),

((l − i+ j) (mod m) +m, j; (l − i) (mod m) +m),

((l − i+ j) (mod m) +m, l +m; (i− j) (mod m)) |

0 ≤ i, j, l ≤ m− 1}
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It follows, since L3 = LT2 and L6 = LT1 , that L3 and L6 each contain m3 in-

tercalates. Also, since each of the Latin squares is made up of the union of four

subsquares, as in the definition above, it is obvious that transposing all four of the

subsquares will not affect the number of intercalates. This kind of transposition

maps L2 to L4 and L3 to L5. Therefore L5 and L4 each contain m3 intercalates.

We recall from Chapter 2 that one of the six conjugates of a Latin square L is

L−1 = {(i, k; j) | (i, j; k) ∈ L}. We find that L−11 = L2, and L3, L4 and L5 must be

in the same main class as L2 by the previous arguments.

5.2 The 2αm× 2αm construction

We can combine L1, L2, L3 and L6 to reach a Latin square L′ of order 4m, m odd, as

follows. We note that the underlying structure of L′ corresponds to Z2
2, as displayed

below.

A0 (A1)T (A2)T B3

A1 (A0)T B3 (A2)T

A2 B3 (A0)T (A1)T

B3 A2 A1 A0

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

L′ Z2
2

Thus

L′ = S(A, 0, 0, 0) ∪ S(AT , 0, 1, 1) ∪ S(AT , 0, 2, 2) ∪ S(B, 0, 3, 3) ∪

S(A, 1, 0, 1) ∪ S(AT , 1, 1, 0) ∪ S(B, 1, 2, 3) ∪ S(AT , 1, 3, 2) ∪

S(A, 2, 0, 2) ∪ S(B, 2, 1, 3) ∪ S(AT , 2, 2, 0) ∪ S(AT , 2, 3, 1) ∪

S(B, 3, 0, 3) ∪ S(A, 3, 1, 2) ∪ S(A, 3, 2, 1) ∪ S(A, 3, 3, 0).

We now use L′ to verify that I(2αm) ≥ (2αm)2(3m2α + 2α− 4)/16, when α ≥ 2.

Theorem 5.2.2 For α ≥ 2, I(2αm) ≥ (2αm)2(3m2α + 2α − 4)/16.

Proof. Consider Z2
2 displayed above; it contains 12 distinct intercalates. Then if

{(r1, c1; e1), (r1, c2; e2), (r2, c1; e2), (r2, c2; e1)} is an intercalate in Z2
2, we have that

D = {(i, j;L′ij) | ((c1m ≤ j ≤ c1m+m− 1) ∨ (c2m ≤ j ≤ c2m+m− 1)) ∧

((r1m ≤ i ≤ r1m+m− 1) ∨ (r2m ≤ i ≤ r2m+m− 1))}

59



is a subsquare of L′ which is isomorphic to one of L1, L2, L3, L4, L5 or L6 and thus

contains exactly m3 intercalates. Therefore I(L′) = 12m3, and thus I(4m) ≥ 12m3.

Heinrich and Wallis counted the number of intercalates in the direct product of

two Latin squares M (of order k) and N (of order l). This count was used to create

a new lower bound on I(kl):

I(kl) ≥ I(k)l2 + I(l)k2 + 4.I(k).I(l)

If we use the Latin squares M = Zα−22 and N = L′, we may use this formula

with k = 2α−2 and l = 4m and the values I(2α−2) =
(2α−2)2(2α−2 − 1)

4
(known from

Heinrich and Wallis), and I(4m) ≥ 12m3. Thus we deduce that:

I(2αm) ≥ I(4m).(2α−2)2 + I(2α−2).(4m)2 + 4.I(2α−2).I(4m)

= 12m3.22α−4 + 16m2.
(2α−2)2(2α−2 − 1)

4
+

4.
(2α−2)2(2α−2 − 1)

4
.12m3

= (2αm)2(3m.2α + 2α − 4)/16

We comment on an attempt to generalise this construction to 8m × 8m Latin

squares. It was expected, since I(4m) ≥ I(4)m3, and since this had been obtained

by “doubling” previous constructions in a clever way, that a construction could be

obtained which would give I(8m) ≥ I(8)m3, that is, I(8m) ≥ 112m3.

There is a total of twelve 2m× 2m Latin squares containing m×m subsquares

isomorphic to A,AT and B. We shall refer to these subsquares as L1, . . . , L12.

All concatenations of four Latin squares from L1, . . . , L12 into 4m× 4m squares

were examined by computer. Thus, a total of 124 4m× 4m squares were examined,

giving 96 subsquares similar to L′ which contain 12m3 intercalates. (We number

these L′1, . . . , L
′
96.) Then all concatenations of four Latin squares from L′1, . . . , L

′
96

into 8m× 8m squares were examined. This is a total of 964 8m× 8m Latin squares.

Unfortunately, all of these Latin squares contained the number of intercalates pre-

dicted by the above theorem.
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5.3 A critical set of order 4m

It will be useful to restate the following lemmas from Donovan [26].

Lemma 5.3.4 If L is a Latin square of order n, S a subsquare in L and C a critical

set in L, then C ∩ S must have a unique completion in S.

Lemma 5.3.5 Let L be a Latin square with critical set C. Let (α, β, γ) be an

isotopism from the critical set C onto C ′. Then C ′ is a critical set in the Latin

square L′ isotopic to L.

Lemma 5.3.6 Let L be a Latin square with critical set C and let C ′ be a conjugate

of C. Then C ′ is a critical set in the corresponding conjugate L′ of L.

We also restate Theorem 2 from Donovan and Cooper [28].

Theorem 5.3.3 Let L be the back-circulant Latin square of order n; then the set

C = {(i, j; i+ j) | i = 0, . . . , n− 2 and j = 0, . . . , n− 2− i}

is a critical set in L of size
n2 − n

2
.

In the 4m× 4m Latin square L′ given above we can find a critical set P of size
23m2 − 9m

2
. This construction will work for any integer m, not just the odd values.

We define some new notation to create critical sets in the Latin squares A,AT

and B. Let L be an m ×m Latin square, and let G(L) = {(i, j;Lij) | (0 ≤ i, j ≤

m − 1) ∧ (m ≤ i + j ≤ 2m − 2)}, H(L) = {(i, j;Lij) | 1 ≤ j ≤ i ≤ m − 1}, and

J(L) = {(i, j;Lij) | 1 ≤ i ≤ j ≤ m−1}. Then |G(L)| = |H(L)| = |J(L)| = m2 −m
2

.

Note that H(LT ) = (J(L))T .

Now let P be the following partial Latin square:

H(A0) H((A1)T ) H((A2)T ) G(B3)

J(A1) (A0)T G(B3) (A2)T

J(A2) G(B3) (A0)T (A1)T

G(B3) A2 A1 A0
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Thus

P = S(H(A), 0, 0, 0) ∪ S(H(AT ), 0, 1, 1) ∪ S(H(AT ), 0, 2, 2) ∪

S(G(B), 0, 3, 3) ∪

S(J(A), 1, 0, 1) ∪ S(AT , 1, 1, 0) ∪ S(G(B), 1, 2, 3) ∪ S(AT , 1, 3, 2) ∪

S(J(A), 2, 0, 2) ∪ S(G(B), 2, 1, 3) ∪ S(AT , 2, 2, 0) ∪ S(AT , 2, 3, 1) ∪

S(G(B), 3, 0, 3) ∪ S(A, 3, 1, 2) ∪ S(A, 3, 2, 1) ∪ S(A, 3, 3, 0).

For example, when m = 3, P is the following critical set:

0 3 6 9

1 0 5 3 8 6 9 10

0 1 2 6 7 8

3 5 2 0 1 9 8 6 7

3 1 2 0 9 10 7 8 6

0 1 2 3 4 5

6 8 9 2 0 1 5 3 4

6 9 10 1 2 0 4 5 3

6 8 7 3 5 4 0 2 1

9 7 6 8 4 3 5 1 0 2

9 10 8 7 6 5 4 3 2 1 0

Theorem 5.3.4 The partial Latin square P is a critical set contained in L′, a Latin

square of size 4m, and |P | = 23m2 − 9m

2
. Therefore lcs(4m) ≥ 23m2 − 9m

2
.

Proof. Consider the following partial Latin squares Q and U :

H(A0) H((A1)T )

J(A1) (A0)T

H((A0)T ) G(B1)

G(B1) (A0)T

Q U

Thus

Q = S(H(A), 0, 0, 0) ∪ S(H(AT ), 0, 1, 1) ∪

S(J(A), 1, 0, 1) ∪ S(AT , 1, 1, 0),

U = S(H(AT ), 0, 0, 0) ∪ S(G(B), 0, 1, 1) ∪

S(G(B), 1, 0, 1) ∪ S(AT , 1, 1, 0).
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Given these sets, we may consider P as:

P = S(Q, 0, 0, 0) ∪ S(U, 0, 1, 1) ∪ S(UT , 1, 0, 1) ∪ S(L3, 1, 1, 0).

We shall begin by proving that S(Q, 0, 0, 0) and S(U, 0, 1, 1) are critical sets in

the Latin squares S(L2, 0, 0, 0) and S(L6, 0, 1, 1) respectively, and so by Lemma 5.3.4

every entry in these subarrays and the subarray S(UT , 1, 0, 1) is necessary for the

unique completion of P .

We prove that Q is a critical set for L2. Consider the partial Latin subsquare

of Q, S(H(A), 0, 0, 0). By Lemmas 5.3.4, 5.3.5 and 5.3.6 and Theorem 5.3.3, H(A)

is a critical set for A. Thus if any entry (x, y; z) is removed from S(H(A), 0, 0, 0),

S(H(A), 0, 0, 0) \ {(x, y; z)} will no longer uniquely complete to A and thus the

partial Latin square Q will no longer have unique completion. Thus every entry

occurring in S(H(A), 0, 0, 0) is necessary in Q for Q to have unique completion to

L2. Similar arguments apply for the partial Latin subsquares S(J(A), 1, 0, 1) and

S(H(AT ), 0, 1, 1).

We consider the entries of Q occurring in the Latin subsquare of Q, S(AT , 1, 1, 0).

For m ≤ i ≤ 2m− 1, m ≤ j ≤ 2m− 1 and either i = m, or j 6= m and i ≥ j, there

is an intercalate

I = {(i, j; (j − i) (mod m)), (0, j; j),

(0, (i− j) (mod m); (j − i) (mod m)), (i, (i− j) (mod m); j)}

such that I ∩Q = {(i, j; (j − i) (mod m))}. For m ≤ i ≤ 2m− 1, m ≤ j ≤ 2m− 1

and either j = m, or i 6= m and i ≤ j, there is an intercalate

I = {(i, j; (j − i) (mod m)), (i, 0; i),

((j − i) (mod m), 0; (j − i) (mod m)), ((j − i) (mod m), j; i)}

such that I ∩ Q = {(i, j; (j − i) (mod m))}. Therefore every entry occurring in

S(AT , 1, 1, 0) is necessary in Q for Q to have unique completion.

We complete Q to L2 by noting that each row and column of S(AT , 1, 1, 0)

contains all of the symbols m, . . . , 2m − 1 and thus both S(J(A), 1, 0, 1) and

S(H(AT ), 0, 1, 1) are forced to use only the symbols 0, . . . ,m − 1. By Lemmas

5.3.4, 5.3.5 and 5.3.6 and Theorem 5.3.3, J(A) is a critical set for A, H(A) is
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a critical set for A and H(AT ) is a critical set for AT . Thus the completions

in Q of S(H(AT ), 0, 1, 1) and S(J(A), 1, 0, 1) are forced to be S(AT , 0, 1, 1) and

S(A, 1, 0, 1) respectively, which forces the unique completion in Q of S(H(A), 0, 0, 0)

to S(A, 0, 0, 0). Thus Q has a unique completion to L2, and is a critical set. The fact

that all the entries in Q are necessary for unique completion to L2 will be essential

to the proof that P is a critical set, because several subsquares in P are isomorphic

to Q.

The partial Latin square U is proven to be a critical set for L6 in a similar

manner to Q. Every entry in S(H(AT ), 0, 0, 0), S(G(B), 0, 1, 1) and S(G(B), 1, 0, 1)

is required for U to have unique completion to L6.

We consider the entries of U occurring in the Latin subsquare, S(AT , 1, 1, 0). For

m ≤ i ≤ 2m− 1, m ≤ j ≤ 2m− 1 and i ≥ j, there is an intercalate

I = {(i, j; (j − i) (mod m)),

(i− j, j; i), (i, 0; i), (i− j, 0; (j − i) (mod m))}

such that I ∩ U = {(i, j; (j − i) (mod m))}. For m ≤ i ≤ 2m− 1, m ≤ j ≤ 2m− 1

and i < j, there is an intercalate

I = {(i, j; j − i), (i, 2m− 1− i; 2m− 1),

(2m− 1− i, 2m− 1− j; j − i), (2m− 1− j, j; 2m− 1)}

such that I ∩ U = {(i, j; (j − i) (mod m))}.

The unique completion of U is shown in a manner analogous to Q. Thus U is a

critical set in the Latin square L6. Similarly, by Lemmas 5.3.4, 5.3.5, and 5.3.6, UT

must be a critical set for L1.

To complete the proof that P is a critical set for L′, we must also show that the

set

R = S(H(A), 0, 0, 0) ∪ S(G(B), 0, 1, 1) ∪

S(G(B), 1, 0, 1) ∪ S(A, 1, 1, 0)

is a critical set in L1.

The partial Latin square R may be represented by the following diagram.

H(A0) G(B1)

G(B1) A0
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and we can see that if the mapping i → m − i, 1 ≤ i ≤ m − 1, is applied to

the symbols of R, then we obtain U . Hence R and U are isotopic. Thus, by the

arguments presented above, R is a critical set in L1.

We now have enough information to prove that P is a critical set for L′.

There are three distinct types of partial Latin subsquare of size 2m× 2m in P ,

which correspond to Q, R, U and UT .

The partial Latin subsquares in P ,

S(H(A), 0, 0, 0) ∪ S(H(AT ), 0, 1, 1) ∪ S(J(A), 1, 0, 1) ∪ S(AT , 1, 1, 0) and

S(H(A), 0, 0, 0) ∪ S(H(AT ), 0, 2, 2) ∪ S(J(A), 2, 0, 2) ∪ S(AT , 2, 2, 0),

correspond to Q.

The partial Latin subsquare in P ,

S(H(A), 0, 0, 0) ∪ S(G(B), 0, 3, 3) ∪ S(G(B), 3, 0, 3) ∪ S(A, 3, 3, 0),

corresponds to R.

The partial Latin subsquares in P ,

S(H(AT ), 0, 2, 2) ∪ S(G(B), 0, 3, 3) ∪ S(G(B), 1, 2, 3) ∪ S(AT , 1, 3, 2) and

S(H(AT ), 0, 1, 1) ∪ S(G(B), 0, 3, 3) ∪ S(G(B), 2, 1, 3) ∪ S(AT , 2, 3, 1),

correspond to U .

The partial Latin subsquares in P ,

S(J(A), 2, 0, 2) ∪ S(G(B), 2, 1, 3) ∪ S(G(B), 3, 0, 3) ∪ S(A, 3, 1, 2),

S(J(A), 1, 0, 1) ∪ S(G(B), 1, 2, 3) ∪ S(G(B), 3, 0, 3) ∪ S(A, 3, 2, 1),

correspond to UT .

Now all of the subsquares listed above which correspond to Q, R, U and UT are

made up of the union of four partial Latin squares. If we consider the partial Latin

squares that make up these unions, we find that there is a total of sixteen different

partial Latin squares. These correspond to the sixteen partial Latin squares used in

the first definition of P .

We have shown that Q, R, U and UT are critical sets for L2, L1, L6 and L1

respectively. Thus, if any entry from any of the sixteen partial Latin squares is
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removed, one of the partial Latin squares corresponding to Q, R, U or UT above

will not have unique completion. Therefore, we have, by Lemmas 5.3.4 and 5.3.5, all

of the entries in P are necessary for P to have unique completion. The reasoning is

the same as in the proof that R and U are critical sets. Any entry (x, y; z) removed

from P in a partial Latin subsquare X corresponding to Q, R, U or UT ensures that

the partial Latin subsquare X \ {(x, y; z)} no longer has unique completion. Thus

the partial Latin square P \ {(x, y; z)} also no longer has unique completion.

We complete P by noting that both S(A, 3, 3, 0) ∪ S(A, 3, 2, 1) ∪

S(A, 3, 1, 2) and S(A, 3, 3, 0) ∪ S(A, 2, 3, 1) ∪ S(A, 1, 3, 2) use all of the symbols

0, . . . , 3m − 1 and thus both S(G(B), 0, 3, 3) and S(G(B), 3, 0, 3), respectively, are

forced to use only the symbols 3m, . . . , 4m − 1. As noted above, G(B) is a crit-

ical set for B. Thus S(G(B), 0, 3, 3) and S(G(B), 3, 0, 3) are forced in P to com-

plete to S(B, 0, 3, 3) and S(B, 3, 0, 3) respectively. Similar reasoning shows that

S(G(B), 2, 1, 3) and S(G(B), 1, 2, 3) are forced to complete in P to S(B, 2, 1, 3) and

S(B, 1, 2, 3) respectively. Then the rest of the entries in the partial Latin square

have forced completion to L′. Thus P has a unique completion to L′, and is a

critical set.

Also, we know that |Q| = 5m2 − 3m

2
and that |U | = 2×|G(B)|+ |H(A)|+ |A| =

|Q|. Thus |P | = |Q|+ |U |+ |UT |+ |L3| =
23m2 − 9m

2
.

This is a significant construction because it is the first which is not made up

of four back-circulant Latin squares combined, and it also combines several other

critical set constructions into one whole construction. It also gives a better bound

for lcs(4m) than the previous bound given by Donovan [26] (lcs(2m) ≥ 5m2 − 3m

2
).

5.4 Prolonging the 2αm× 2αm construction

The technique of prolonging an n× n Latin square along a transversal to reach an

(n+ 1)× (n+ 1) Latin square was described in Chapter 2. We consider prolonging

the construction for the 4m × 4m Latin square constructed above. For m odd, we
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can prolong L′, given in the last section, along the transversal T . We give T below.

T = {(i, j; i− j) | (0 ≤ i, j ≤ m− 1) ∧ ((i+ j) ≡ 0 (mod m))} ∪

{(i, j; i+ j) | (m ≤ i ≤ 2m− 1) ∧ (2m ≤ j ≤ 3m− 1) ∧

(i ≡ j (mod m))} ∪

{(i, j; j − i) | (2m ≤ i ≤ 3m− 1) ∧ (3m ≤ j ≤ 4m− 1) ∧

((i+ j) ≡ 0 (mod m))} ∪

{(i, j; i− j) | (3m ≤ i ≤ 4m− 1) ∧ (m ≤ j ≤ 2m− 1) ∧

((i+ j) ≡ 0 (mod m))}.

Theorem 5.4.5 For α = 2 or α ≥ 4,

I(2αm+ 1) ≥ 2αm[2αm(3m.2α + 2α − 20)/16 +m+ 1] + 2α−1m(m− 1).

Proof. We begin with the direct product E = D × L′, where D = Zα−22 . Since

L′ has a transversal T , we can also find a transversal in E and prolong it. This is

possible since we know from Heinrich and Wallis [38] that D also has a transversal

(when α 6= 3). Since E consists of copies of L′, the transversal in E consists of copies

of the transversal in L′ in the subsquares in E corresponding to the transversal in

D.

We also know the value of I(E) from the previous theorem.

In the prolongation process, as in Heinrich and Wallis, at most 2αm(2αm −m)

intercalates are destroyed and at least 2α
(
m+1
2

)
intercalates are recovered.

We give the reasoning behind this. For each entry x in a row of E, there are at

most (2αm−m) intercalates containing x, since if we suppose that x falls within a

copy of A, AT or B, there is an intercalate created with x and any other entry in

the same row, but outside the copy of A, AT or B. This accounts for the destroyed

intercalates. However, in each of the 2α copies of L′ in E which are affected by the

transversal, the substitution of a new symbol creates
(
m+1
2

)
intercalates in each such

copy. To illustrate this creation of intercalates, the diagram below gives a copy of A

where m = 5 before and after the prolongation. The copy of A before prolongation

contains no intercalates, but after prolongation contains
(
5+1
2

)
intercalates. (The

symbol 6 represents the symbol which is added after prolongation. Note that in the
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actual prolongation of L′, the final row and column of the prolongation of A occur

in the final row and column of L′.)

1 5 4 3 2

2 1 5 4 3

3 2 1 5 4

4 3 2 1 5

5 4 3 2 1

6 5 4 3 2 1

2 1 5 4 6 3

3 2 1 6 4 5

4 3 6 1 5 2

5 6 3 2 1 4

1 4 2 5 3 6

A before A after

Therefore

I(2αm+ 1) ≥ (2αm)2(3m.2α + 2α − 4)/16− 2αm(2αm−m) + 2α
(
m+ 1

2

)
= 2αm(2αm(3m.2α + 2α − 4)/16− 2αm+m+ 1) +

2α−1m(m− 1)

= 2αm(2αm(3m.2α + 2α − 20)/16 +m+ 1) + 2α−1m(m− 1).

We note that this construction actually gives 264 intercalates when α = 2 and

m = 3, since many more intercalates are added than are counted above.

In [48], Kotzig and Zaks showed that I(4m+ 1) ≤ 2m(8m2− 4m− 1) = 16m3−

8m2 − 2m. When α = 2, the bound above gives I(4m + 1) ≥ 12m3 − 10m2 + 2m,

and the old Heinrich and Wallis bound gave I(4m+ 1) ≥ 8m3 + 6m2 − 10m. Thus,

this new bound is a significant improvement towards the theoretical bound.

5.5 A construction of an 11 × 11 intercalate-rich

Latin square

If we begin with the Latin square Z2
3 and prolong it along the main diagonal, we

reach the following square M ′:
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9 1 2 3 4 5 6 7 8 0

1 9 0 4 5 3 7 8 6 2

2 0 9 5 3 4 8 6 7 1

3 4 5 9 7 8 0 1 2 6

4 5 3 7 9 6 1 2 0 8

5 3 4 8 6 9 2 0 1 7

6 7 8 0 1 2 9 4 5 3

7 8 6 1 2 0 4 9 3 5

8 6 7 2 0 1 5 3 9 4

0 2 1 6 8 7 3 5 4 9

M ′

Then M ′ has 117 intercalates, and the largest known critical set of order 10,

shown in Appendix 1, is derived from this square. If we prolong M ′ along T where

T = {(3m+ i, 3m+ j; 3m+ i+ j) |

(0 ≤ i, j ≤ 2) ∧ (j − i ≡ 1 (mod 3)) ∧ (0 ≤ m ≤ 2)} ∪

{(9, 9; 9)},

we reach the following square M ′′:

9 10 2 3 4 5 6 7 8 0 1

1 9 10 4 5 3 7 8 6 2 0

10 0 9 5 3 4 8 6 7 1 2

3 4 5 9 10 8 0 1 2 6 7

4 5 3 7 9 10 1 2 0 8 6

5 3 4 10 6 9 2 0 1 7 8

6 7 8 0 1 2 9 10 5 3 4

7 8 6 1 2 0 4 9 10 5 3

8 6 7 2 0 1 10 3 9 4 5

0 2 1 6 8 7 3 5 4 10 9

2 1 0 8 7 6 5 4 3 9 10

M ′′
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This Latin square has 172 intercalates, which is more than double the previous

bound given by Heinrich and Wallis, who gave I(11) ≥ 80. Also, we can find very

large critical sets in it; for example, the following critical set in M ′′ is of size 70.

9 3 4 5 6 7 8 0

1 9 4 5 3 7 8 6 2

9 5 3 4 6 7 1

3 4 5 8 0 1 2 6

3 4 6 9 2 0 1

6 2 9 5 3

6 0 4 9 5

8 6 2 1 9

6 8 7 3 5 4

2 1 0 8 7 6 5 4 3 9

Critical set for M ′′

Unfortunately, this construction does not appear to generalise well.

5.6 A note on the 14 × 14 intercalate-rich Latin

squares

We focus on two known 14×14 constructions for intercalate-rich Latin squares, and

find critical sets of large size in these Latin squares.

If we take the direct product of the Latin square corresponding to the Steiner

triple system of order 7 and Z2, the result is a 14 × 14 Latin square with 385

intercalates. The construction shown earlier, L1, with m = 7, gives a 14× 14 Latin

square with 343 intercalates.

Donovan’s critical set construction [26] for Latin squares of order 2m results in

a critical set of size 112. However, critical sets larger than this can be found.

The first example given immediately below, M1, is of size 117, and is from the

Latin square with 385 intercalates. It was obtained by starting with the relevant
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Latin square, and for each 0 ≤ i, j, k ≤ 13, removing row i, column j and all

occurrences of symbol k, to arrive at a partial Latin square we shall denote Y (i, j, k).

For each partial Latin square Y (i, j, k), the subsquare of rows 0, . . . , 6 and of

columns 0, . . . , 6 was fixed while all unnecessary entries elsewhere were removed,

and when this process terminated, all unnecessary entries everywhere in the partial

Latin square were removed.

3 5 7 6 9 12 11 14

1 3 7 6 5 4 9 10 14 13 11

5 6 7 4 1 3 12 11 8 9 10

4 7 6 1 5 3 11 13 8 12 10 9

7 4 5 14 12 9 10 8

5 4 3 1 13 10 9 8

10 9 11 14 13 1 5 4 7 6

10 9 8 14 11 12 3 1 6 7 4 5

11 3 7 6 4

12 13 14 8 10 5 7 4 1 3

14 13 4 6 1 5 3

11 12 9 10 5 3 6

12 9 8 6 4 3 1 7

M1

The second example, M2, is from the Latin square L1 of Section 5.1 with m = 7.

We have that |M2| = 118. Three of the four subsquares in the union which defines

L1 contain critical sets of size 23 which are pairwise conjugate to each other. This

critical set was constructed by starting with a list of critical sets of size 23 in the

back-circulant Latin square of order 7 and combining critical sets isomorphic to it

in A and AT together with a complete subsquare, A, AT , or B. This critical set is

of interest because it is in a similar pattern to Donovan’s construction for a critical

set of size
5m2 − 3m

2
in a 2m× 2m Latin square, but it uses conjugate critical sets

of size greater than
72 − 7

2
in three of the four subsquares. Such critical sets have

not been achieved before.
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Thus, this example raises the possibility that a construction of a critical set of

size greater than
n2 − n

2
in the back-circulant Latin square of order n could lead to

generalized constructions of size greater than
5m2 − 3m

2
in a 2m×2m Latin square.

8 9 10 11 12 13 14

1 6 5 4 3 9 10 11 12 13 14 8

1 7 6 5 4 10 11 12 13 14 8 9

6 5 11 12 13 14 8 9 10

4 1 6 12 13 14 8 9 10 11

5 1 7 13 14 8 9 10 11 12

6 5 4 3 1 14 8 9 10 11 12 13

10 11 12 13 14 8 1 6 5 4 3

11 12 13 8 1 7 6 5 4

12 13 8 10 6 5

13 14 11 4 1 6

8 12 5 1 7

8 11 12 13 6 5 4 3 1

M2

5.7 Conclusion

We have now given a new construction for Latin squares of order 4m which proves

that I(4m) ≥ I(4)m3. This leads to a better bound on I(2αm) for α ≥ 2, m odd.

Also, critical sets can be discovered in such squares of extraordinary size. This

discovery is more evidence for the conjecture that Latin squares containing many

intercalates are closely related to the largest critical sets in Latin squares of a given

order.

Since a transversal existed in this construction, it was prolonged to give a new

bound on I(4m+1), which was generalised to a new bound on I(2αm+1) for α = 2

or α ≥ 4.
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Further research might include trying to discover a combination of subsquares

of the form A,AT and B into a square which could prove a new bound on I(7m):

I(7m) ≥ I(7)m3, that is, I(7m) ≥ 42m3. It would also be interesting to look at the

maximum number of m×m subsquares, m > 2, for a given order of Latin square.
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Chapter 6

Closing a gap in the spectrum of

critical sets

6.1 Introduction

In 1998 Donovan and Howse proved that for all n there exist critical sets of order

n and size s, where bn
2

4
c ≤ s ≤ n2 − n

2
with the exception of the case s =

n2

4
+ 1

when n is even. In this chapter we shall present a construction for this exception,

where n ≥ 6. It is based on the discovery of a critical set of size 17 for a Latin

square of order 8. Thus Theorem 6.3.6 verifies that there does exist a critical set of

order n and size
n2

4
+ 1 when n is even and n ≥ 6.

6.2 Critical sets in Latin squares of orders 6 and

8

Recall that BCn denotes the back circulant Latin square {(i, j; i + j) | 0 ≤ i, j ≤

n− 1} where the addition i+ j is taken modulo n.

Let A = {(i, j; i+ j) | (0 ≤ i, j ≤ 5)∧ ((0 ≤ i+ j ≤ 1)∨ (8 ≤ i+ j ≤ 10))}. Then

A is a critical set of order 6 and size
62

4
= 9 in BC6. Beginning with A, we remove

entry (5, 4; 3) and add entries (3, 2; 5) and (3, 4; 3) and denote the new partial Latin

square by A′. Programs developed from Algorithm 3.1.1 can be used to verify that

A′ is a critical set of size
62

4
+ 1 = 10 which completes to the Latin square LA as
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Table 6.1: Critical sets and Latin squares of order 6

0 1

1

2

2 3

2 3 4

0 1

1

5 3 2

2 3

2 4

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

4 0 5 1 3 2

5 4 1 0 2 3

3 5 0 2 1 4

A A′ LA

Table 6.2: Critical sets and Latin squares of order 8

0 1 2

1 2

2

3

3 4

3 4 5

3 4 5 6

0 1 2

1 2

2

7 4 5 3

3 4

3 4 5

3 6

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

2 3 4 5 6 7 0 1

3 4 5 6 7 0 1 2

6 0 1 7 2 4 5 3

5 7 6 1 0 2 3 4

7 6 0 2 1 3 4 5

4 5 7 0 3 1 2 6

B B′ LB

shown in Table 6.1.

Let B = {(i, j; i + j) | (0 ≤ i, j ≤ 7) ∧ ((0 ≤ i + j ≤ 2) ∨ (11 ≤ i + j ≤ 14))}.

Then B is a critical set of order 8 and size
82

4
= 16 in BC8. Beginning with B, we

remove entries (7, 5; 4) and (7, 6; 5) and add entries (4, 3; 7), (4, 5; 4), and (4, 6; 5),

and denote the new partial Latin square by B′.

Again, programs developed from Algorithm 3.1.1 can be used to verify that B′

is a critical set of size
82

4
+ 1 = 17 and completes to the Latin square LB as shown

in Table 6.2.

Therefore A′ and B′ demonstrate that critical sets of order n and size
n2

4
+ 1

exist when n = 6 and n = 8 respectively.
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6.3 Critical sets in Latin squares of order n, n

even

The above examples can be generalised to produce critical sets of size
n2

4
+ 1, when

n is even.

Theorem 6.3.6 Take the critical set

C = {(i, j; i+ j) | (0 ≤ i+ j ≤ n

2
− 2) ∨ (

3n

2
− 1 ≤ i+ j ≤ 2n− 2)}.

Construct the set

D = (C\{(n− 1, j; j − 1) | n
2

+ 1 ≤ j ≤ n− 2})

∪ {(n
2
, j; j − 1) | n

2
+ 1 ≤ j ≤ n− 2} ∪ {(n

2
,
n

2
− 1;n− 1)}.

Then D is a critical set of size
n2

4
+ 1.

Proof. Henceforth, we shall refer to the completion of D as LD. The following

process outlines how D can be uniquely completed to LD. In completing D, at

each step in the completion process the given cell is forced to contain the specified

symbol. If any other symbol were to be placed in the specified cell, the result would

not be a partial Latin square.

We begin by filling row
n

2
starting at column j = 0 and moving right to column

j =
n

2
− 2. In row

n

2
, fill the cell in column j with:

n− 2, when j = 0;

j − 1, when 1 ≤ j ≤ n

2
− 2;

n

2
− 2, when j =

n

2
.

We shall fill rows n − 2 to
n

2
+ 1 sequentially, from left to right in columns 0 to

n

2
− 2, then column

n

2
, then column

n

2
− 1. So, for 2 ≤ x ≤ n

2
− 1, and 0 ≤ j ≤ n

2
fill the cell in row n− x and column j with:

(n− x) + j (mod n), when j 6= x− 1 and j 6= x− 2;

n− 1, when j = x− 2;
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n− 2, when j = x− 1;

n

2
− 1− x, when j =

n

2
;

n

2
− x, when j =

n

2
− 1.

When n ≥ 8, the triangle bounded by the cells (
n

2
+ 1,

n

2
+ 1), (

n

2
+ 1, n− 3), and

(n−3,
n

2
+1) is filled from bottom to top and left to right. If n ≥ 8, for 3 ≤ x ≤ n

2
−1

fill the cell in row n− x, column j =
n

2
+ 1 to j =

n

2
+ x− 2 with (n− x) + j (mod

n).

For 0 ≤ j ≤ n

2
− 3, fill the cell in row n− 1 and column j with

n

2
+ j (mod n). Fill

the cell in row n− 1 and column j with

n− 1, when j =
n

2
− 2 and

0, when j =
n

2
− 1.

For
n

2
+ 1 ≤ j ≤ n− 2, fill the cell in row n− 1 and column j with j − n

2
(mod n).

For 0 ≤ x ≤ n

2
− 1, fill the cells in row x sequentially right to left from column

j = n− 1 to j =
n

2
− 1− x with x+ j.

To prove the necessity of each of the symbols in the critical set D, three varieties

of Latin interchanges will be used:

Variety 1

This Latin interchange uses only two rows and consequently the same symbols in

each row. The disjoint mate is obtained by interchanging the rows. For example,

the Latin interchange I and its disjoint mate I ′ can be represented as:

I = {(r1, c1; e1), (r1, c2; e2), ..., (r1, cm−1; em−1), (r1, cm; em)}

∪ {(r2, c1; e2), (r2, c2; e3), ..., (r2, cm−1; em), (r2, cm; e1)}, and

I ′ = {(r1, c1; e2), (r1, c2; e3), ...(r1, cm−1; em), (r1, cm; e1)}

∪ {(r2, c1; e1), (r2, c2; e2), ..., (r2, cm−1; em−1), (r2, cm; em)}.

Variety 2

This Latin interchange uses three rows, with the top row containing two entries. For
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example, the Latin interchange I and its disjoint mate I ′ can be represented as:

I = {(r1, c1;x), (r1, cm+1; y)}

∪ {(r2, c1; y), (r2, c2; e1), (r2, c3; e2), ..., (r2, cm; em−1), (r2, cm+1; em)}

∪ {(r3, c1; e1), (r3, c2; e2), (r3, c3; e3), ..., (r3, cm; em), (r3, cm+1;x)}, and

I ′ = {(r1, c1; y), (r1, cm+1;x)}

∪ {(r2, c1; e1), (r2, c2; e2), (r2, c3; e3), ..., (r2, cm; em), (r2, cm+1; y)}

∪ {(r3, c1;x), (r3, c2; e1), (r3, c3, e2), ..., (r3, cm; em−1), (r3, cm+1; em)}.

Variety 3

The third variety of Latin interchanges take a number of forms and cannot be writ-

ten as simply as Variety 1 or Variety 2. Full details of these Latin interchanges are

presented in Appendix 3.

For n = 6, proving that the entries in the example given above are necessary can

be verified using programs developed from Algorithm 3.1.1. We assume n ≥ 8 and

prove the following. Latin interchanges I1 through I10, below, exist in LD:

I1 is a Latin interchange of Variety 1, and I1 ∩D = {(n
2
,
n

2
− 1;n− 1)}.

I1 = {(n
2
, 0;n− 2)}

∪ {(n
2
, j; j − 1) | 1 ≤ j ≤ n

2
− 2}

∪ {(n
2
,
n

2
− 1;n− 1), (

n

2
,
n

2
;
n

2
− 2)}

∪ {(n− 2, 0;n− 1), (n− 2, 1;n− 2)

∪ {(n− 2, j; j − 2) | 2 ≤ j ≤ n

2
− 2}

∪ {(n− 2,
n

2
− 1;

n

2
− 2), (n− 2,

n

2
;
n

2
− 3)}.
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I2 is a Latin interchange of Variety 1, and I2 ∩D = {(n− 1, n− 1;n− 2)}.

I2 = {(n
2
− 1,

n

2
− 1;n− 2)}

∪ {(n
2
− 1, j;

n

2
+ j − 1)|n

2
+ 1 ≤ j ≤ n− 1}

∪ {(n− 1,
n

2
− 1; 0)}

∪ {(n− 1, j; j − n

2
) | n

2
+ 1 ≤ j ≤ n− 2}

∪ {(n− 1, n− 1;n− 2)}.

I3 is a Latin interchange of Variety 1, and I3 ∩D = {(n− 1,
n

2
;
n

2
− 1)}.

I3 = {(n
2
− 1, j;

n

2
+ j − 1) | 0 ≤ j ≤ n

2
− 2}

∪ {(n
2
− 1,

n

2
;n− 1)}

∪ {(n− 1, j; j +
n

2
) | 0 ≤ j ≤ n

2
− 3}

∪ {(n− 1,
n

2
− 2;n− 1), (n− 1,

n

2
;
n

2
− 1)}.

For
n

2
+ 2 ≤ x ≤ n − 2, I4 is a Latin interchange of Variety 2, and I4 ∩ D =

{(x, 3n

2
− 1− x;

n

2
− 1)}.

For
n

2
+ 2 ≤ x ≤ n− 2, construct the Latin interchange

H = {(x− n

2
− 1, n− x;

n

2
− 1), (x− n

2
− 1,

3n

2
− 1− x;n− 2)}

∪ {(x− 1, j;x− 1 + j) | n
2

+ 1 ≤ j ≤ 3n

2
− 1− x}

∪ {(x− 1, n− x;n− 2)}

∪ {(x− 1,
n

2
− 1;x− n

2
− 1), (x− 1,

n

2
;x− n

2
− 2)}

∪ {(x, j;x+ j) | n
2

+ 1 ≤ j ≤ 3n

2
− 1− x}

∪ {(x, j;x+ j) | n− x ≤ j ≤ n

2
− 2}

∪ {(x, n
2
− 1;x+

n

2
), (x,

n

2
;x+

n

2
− 1)}.

Then when x =
n

2
+ 2, let I4 = H, and when

n

2
+ 3 ≤ x ≤ n − 2, let I4 =

H ∪ {(x− 1, i;x− 1 + i) | n− x+ 1 ≤ i ≤ n

2
− 2}.

For
n

2
+ 1 ≤ x ≤ n − 2, I5 is a Latin interchange of Variety 2, and I5 ∩ D =

{(x, n− 1;x− 1)}.
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I5 = {(x− n

2
, j;x− n

2
+ j) | n

2
− 1 ≤ j ≤ n− 1}

∪ {(x− n

2
+ 1, j;x− n

2
+ 1 + j) | n

2
− 1 ≤ j ≤ n− 1}

∪ {(x, n
2
− 1;x− n

2
), (x, n− 1;x− 1)}.

I6 is a Latin interchange of Variety 1, and I6 ∩D = {(n
2

+ 1, n− 2;
n

2
− 1)}.

If 4 | n, construct the Latin interchange

I6 = {(n
2
− 1, 2j;

n

2
− 1 + 2j) | 0 ≤ j <

n

4
}

∪ {(n
2
− 1,

n

2
− 1;n− 2)} ∪

∪ {(n
2
− 1, 2j;

n

2
− 1 + 2j) | n

4
< j <

n

2
}

∪ {(n
2

+ 1, 2j;
n

2
+ 1 + 2j) | 0 ≤ j <

n

4
− 1}

∪ {(n
2

+ 1,
n

2
− 2;n− 2), (

n

2
+ 1,

n

2
− 1; 1)}

∪ {(n
2

+ 1, 2j;
n

2
+ 1 + 2j) | n

4
< j <

n

2
}.

If 4 - n, construct the Latin interchange

I6 = {(n
2
− 1, 2j;

n

2
− 1 + 2j) | 0 ≤ j <

n

4
− 1}

∪ {(n
2
− 1,

n

2
;n− 1)}

∪ {(n
2
− 1, 2j;

n

2
− 1 + 2j) | n

4
< j <

n

2
}

∪ {(n
2

+ 1, 2j;
n

2
+ 1 + 2j) | 0 ≤ j <

n

4
− 2}

∪ {(n
2

+ 1,
n

2
− 3;n− 1), (

n

2
+ 1,

n

2
; 0)}

∪ {(n
2

+ 1, 2j;
n

2
+ 1 + 2j) | n

4
< j <

n

2
}.

I7 is a Latin interchange of Variety 1, and I7 ∩D = {(n
2
, n− 1;

n

2
− 1)}.

If 4 | n, construct the Latin interchange

I7 = {(n
4
− 1, j;

n

4
+ j − 1), (

n

4
, j;

n

4
+ j) | n

4
≤ j ≤ n− 1}

∪ {(n
2
,
n

4
;
n

4
− 1), (

n

2
, n− 1;

n

2
− 1)}.

If 4 - n, construct the Latin interchange

I7 = {(n− 2

4
,
n− 2

4
;
n

2
− 1), (

n− 2

4
, n− 1;

n− 6

4
)}

∪ {(n
2
,
n− 2

4
;
n− 6

4
), (

n

2
, n− 1;

n

2
− 1)}.
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For
n

2
+ 1 ≤ x ≤ n − 2, I8 is a Latin interchange of Variety 1, and I8 ∩ D =

{(n
2
, x;x− 1)}.

I8 = {(n
2
− 1, x− n

2
;x− 1), (

n

2
− 1, x;

n

2
+ x− 1)}

∪ {(n
2
, x− n

2
;
n

2
+ x− 1), (

n

2
, x;x− 1)}.

For (
3n

2
≤ x+ y < 2n− 2) ∧ (x 6= n− 1) ∧ (y 6= n− 1), I9 is a Latin interchange of

Variety 1, and I9 ∩D = {(y, x; y + x)}.

I9 = {(y − n

2
, x− n

2
; y + x), (y − n

2
, x; y + x− n

2
)}

∪ {(y, x− n

2
; y + x− n

2
), (y, x; y + x)}.

Where 0 ≤ x+ y ≤ n

2
− 2, there exists a Latin interchange I10 of Variety 3, with

I10 ∩D = {(y, x; y + x)}.

If 0 ≤ x + y ≤ n

2
− 2, determine the Latin interchange I10 using results found

in [31]. See Appendix 3 for details on how to construct this interchange, which is

referred to as I therein.

Thus we have succeeded in proving the existence of a critical set of order n and

size
n2

4
+ 1 when n is even, and n ≥ 6, a problem which has been open since 1977.

This completes the spectrum of critical sets between the bounds Nelder conjectured

in [57], which were
n2

4
and

n2 − n
2

for the sizes of the smallest and largest critical

sets respectively in a Latin square of order n.
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Chapter 7

Steiner trades and Latin

interchanges

Can our knowledge of the interchangeable sets in Latin squares (Latin interchanges)

be used to classify the interchangeable sets in block designs (trades)? It is this

interesting question which we focus on here. In Section 7.1 we detail the connection

between Latin interchanges and Steiner trades. In Section 7.2 we take all Steiner

trades of volume less than or equal to nine and classify them according to the

structure of the associated Latin interchanges. A slight modification in the definition

of “Latin interchange” will be required for this chapter. Here, we take a Latin

interchange to represent both the partial Latin square and its disjoint mate, instead

of just the partial Latin square.

7.1 The connection between trades and Latin in-

terchanges

Lemma 7.1.7 Let T = (T, T ′) be a 2-(v, 3) Steiner trade based on the set V . Then

the partial Steiner Latin squares I and I ′ corresponding to T and T ′, respectively,

form a Latin interchange and its disjoint mate denoted I = (I, I ′).

Proof. Note that |T | = |T ′| and T ∩ T ′ = ∅; hence I and I ′ have the same volume

and shape and are disjoint. Next, assume that the rows of I and I ′ are not mutually

balanced. That is, for some row r there exists a column j such that (r, j; z) ∈ I,
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but for the same row r, (r, j′; z) /∈ I ′ for any column j′. Correspondingly the

triple {r, j, z} ∈ T for some j ∈ V , but {r, j′, z} /∈ T ′ for any j′ ∈ V , which is

a contradiction as T = (T, T ′) is a trade. We may obtain a similar contradiction

for the columns and so deduce that the rows and columns of I and I ′ are mutually

balanced. Consequently I = (I, I ′) constitutes a Latin interchange and its disjoint

mate as required.

In [25] Donovan, Khodkar and Street showed that for the given trade T = (T, T ′),

where T = {123, 145, 167, 248, 368, 578} and T ′ = {124, 136, 157, 238, 458, 678}, the

partial Steiner Latin squares associated with triples of T can be decomposed into

six disjoint Latin interchanges, denoted Ii = (Ii, I
′
i) for i = 1, . . . , 6, in such

a way that for each i there is a one-to-one correspondence between the entries

of Ii and the triples of T . Further, they showed that no such decomposition

exists for the Latin interchange associated with the trade T = (T, T ′), where

T = {123, 145, 167, 247, 346, 357} and T ′ = {124, 136, 157, 237, 345, 467}. These

results raise the following question:

Question 7.1.4 For which trades T = (T, T ′) can the corresponding Latin inter-

change, denoted I = (I, I ′), be decomposed into six disjoint Latin interchanges,

denoted Ii = (Ii, I
′
i), 1 ≤ i ≤ 6, such that for each i = 1, . . . , 6 there is a one-to-one

correspondence between the triples of T (T ′) and the entries of Ii (I ′i) which maps

{x, y, z} ∈ T to (x, y; z) ∈ Ii?

In this chapter we give some partial answers to this question and, in addition,

give an exact answer for all Steiner trades with block size three and volume less than

or equal to nine. Our list of trades of volume less than or equal to nine has been

taken from [47] where Khosrovshahi and Maimani completely classified all Steiner

trades with block size three and volume six to nine.

7.2 Partial Answers

We begin by stating a result which identifies some Steiner trades whose correspond-

ing partial Steiner Latin squares can be decomposed into six disjoint Latin inter-

changes.

83



Let T = (T, T ′) be a trade. Recall that T is a minimal trade if there is no B

with ∅ 6= B ⊂ T and B′ with ∅ 6= B′ ⊂ T ′ such that (B,B′) is a trade. Also, the

foundation of T is F (T ) = {x | x is contained in a triple of T}.

Lemma 7.2.8 Let T = (T, T ′) be a Steiner minimal trade based on the set V . For

each element x ∈ F (T ) suppose there exists a subset Sx of F (T ) such that x ∈ Sx
and so that each triple of T intersects the set Sx in precisely one element. Then

the Latin interchanges corresponding to T = (T, T ′), denoted I = (I, I ′), can be

decomposed into six disjoint Latin interchanges.

Proof. First we prove that for x, y ∈ F (T ) we have either Sx = Sy or Sx ∩Sy = ∅.

Let Sx 6= Sy and Sx ∩ Sy 6= ∅, as displayed in Figure 7.1. Define

T1 = {{a, b, c} ∈ T | a ∈ Sx \ Sy, b ∈ Sy \ Sx, c ∈ F (T ) \ (Sx ∪ Sy)},

T2 = {{d, e, f} ∈ T | d ∈ Sx ∩ Sy, e, f ∈ F (T ) \ (Sx ∪ Sy)},

T ′1 = {{a′, b′, c′} ∈ T ′ | a′ ∈ Sx \ Sy, b′ ∈ Sy \ Sx, c′ ∈ F (T ) \ (Sx ∪ Sy)} and

T ′2 = {{d′, e′, f ′} ∈ T ′ | d′ ∈ Sx ∩ Sy, e′, f ′ ∈ F (T ) \ (Sx ∪ Sy)}.

We note that if the pair {a, b} occurs in a triple of T then a and b cannot both be in

Sz for any z ∈ T . This leads to T = T1∪T2 and T ′ = T ′1∪T ′2. Now if the pair {a, b}

is in a triple of T1 then {a, b} is in a triple of T ′1. So (T1, T
′
1) is a Steiner trade. This

is a contradiction since T = (T, T ′) is minimal. Hence either Sx = Sy or Sx∩Sy = ∅

for x, y ∈ F (T ).

Now let the triple {a, b, c} be in T ; then Sa ∪ Sb ∪ Sc = F (T ), Sa ∩ Sb = ∅,

Sa ∩ Sc = ∅ and Sb ∩ Sc = ∅. We define

I1 = {(x, y; z) | {x, y, z} ∈ T, x ∈ Sa, y ∈ Sb, z ∈ Sc}.

It is easy to see that there is a one-to-one correspondence between the entries of I1

and the triples of T which maps (x, y; z) ∈ I1 to {x, y, z} ∈ T . Moreover, I1 forms

one of the Latin interchanges into which we are decomposing the partial Latin square

associated with T . Now the six conjugates of I1 decompose I into six disjoint Latin

interchanges, where I = (I, I ′) constitutes the Latin interchange and its disjoint

mate corresponding to T = (T, T ′).
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F (T )

Sx
Sy

Figure 7.1: A trade illustrating Lemma 7.2.8

However, the above condition of Lemma 7.2.8 is not necessary as is shown by

the following example. The partial Steiner Latin squares corresponding to the

trade T = (T, T ′) where T = {136, 148, 159, 239, 246, 257, 347, 358} and T ′ =

{139, 158, 146, 259, 236, 247, 357, 348} can be decomposed into six disjoint Latin in-

terchanges. These may be obtained by taking the conjugates of the Latin interchange

I1 = (I1, I
′
1), where I1 = {(1, 3; 6), (1, 4; 8), (1, 5; 9), (2, 3; 9), (2, 4; 6), (2, 5; 7), (3, 4; 7),

(3, 5; 8)}. This trade does not have the property set out in the above lemma but it

is decomposable.

Thus to further our study we focus on the trades of volume less than ten.

REMARK: We note that if such a decomposition exists for each i = 1, . . . , 6 and

each x ∈ V , the partial Latin square Ii is such that |Rx(Ii)| = |Cx(Ii)| = |Ex(Ii)|

equals the replication number for symbol x. Also, since for i = 1, . . . , 6, it follows

that |T | = |Ii|, the volume of each of the Latin interchanges Ii studied here is less

than or equal to nine. In the paper [41] Keedwell classified the type of all Latin

interchanges of volume less than or equal to 10. We have used his classifications

when arguing that decomposition is not possible and in many of these cases we shall

frequently use the following lemma.

Lemma 7.2.9 If the replication number of an element e is 2 or 3, then for i =
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1, . . . , 6 in any given Latin interchange Ii, e can only occur as a row or a column

or a symbol. If the replication number of a symbol e is 4, then in any given Latin

interchange Ii, e can only occur as a row, a column, or a symbol, or a row and a

column, a row and a symbol, or a column and a symbol.

Proof. Since a Latin interchange requires that |Re(I)| ≥ 2 and |Ce(I)| ≥ 2, and

|Ee(I)| ≥ 2, when the replication number of e is 2 or 3, the element cannot be

split among all of rows and columns, or rows and symbols, or columns and symbols.

Similarly when the replication number of e is 4, the element cannot be split between

rows, columns, and symbols.

There are 25 Steiner trades of volume less than or equal to nine, and classifying

these further we see that up to isomorphism there is one Steiner trade of volume 4,

two Steiner trades of volume 6, two Steiner trades of volume 7, nine Steiner trades of

volume 8 and eleven Steiner trades of volume 9. The triples of these trades are listed

below. Our testing verified that for twelve of these Steiner trades the corresponding

partial Steiner Latin square can be decomposed into six disjoint Latin interchanges

satisfying the properties given in Question 7.1.4. These twelve cases are discussed

below and the general nature of the decomposition is given. For the remainder of

the cases, we present theoretical arguments that indicate why such a decomposition

is not possible.

Trade of volume 4 T0 = (T, T ′) where T = {123, 156, 435, 426} and T ′ = {126, 135,

423, 456}. This trade can be decomposed into Latin interchanges, corresponding to

I1 = (I1, I
′
1) where I1 = {(2, 3; 1),(5,6;1),(5,3;4),(2, 6; 4)}.

Trade of volume 6 T1 = (T, T ′) where T = {123, 145, 167, 247, 346, 357} and

T ′ = {124, 136, 157, 237, 345, 467}. The replication numbers for the elements 1, . . . , 7

are:

Element 1 2 3 4 5 6 7

Replication number in T 3 2 3 3 2 2 3

Assume that the Latin interchanges associated with T1 can be decomposed into

six disjoint Latin interchanges; then since volume(T1) = 6, one of these Latin inter-
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changes must have type 
3 + 3

3 + 3

2 + 2 + 2

 .

So without loss of generality assume column 1 contains three entries; but this im-

plies there are three nonempty rows, which is a contradiction. Therefore no such

decomposition exists.

Trade of volume 6 T2 = (T, T ′) where T = {123, 145, 167, 248, 368, 578} and T ′ =

{124, 136, 157, 238, 458, 678}. This trade can be decomposed into Latin interchanges,

corresponding to I1 = (I1, I
′
1) where I1 = {(1, 3; 2), (1, 4; 5), (1, 7; 6), (8, 4; 2), (8, 3; 6),

(8, 7; 5)}.

Here we digress for a moment and use this trade to illustrate Lemma 7.2.8. Note

that S1 = S8 = {1, 8}, S2 = S5 = S6 = {2, 5, 6} and S3 = S4 = S7 = {3, 4, 7}.

Trade of volume 7 T3 = (T, T ′) where T = {123, 145, 167, 246, 257, 356, 347}

and T ′ = {124, 136, 157, 237, 256, 345, 467}. The only possible type of a Latin

interchange I of volume seven is
3 + 2 + 2

3 + 2 + 2

3 + 2 + 2

 .

Since the replication number of each element is 3, this type is not possible.

Trade of volume 7 T4 = (T, T ′) where T = {123, 145, 167, 248, 358, 369, 579}

and T ′ = {124, 136, 157, 238, 359, 458, 679}. A decomposition exists in which I1 =

(I1, I
′
1) and where

I1 = {(1, 2; 3), (1, 5; 4), (1, 6; 7), (8, 2; 4), (8, 5; 3), (9, 6; 3), (9, 5; 7)}.

Trade of volume 8 T5 = (T, T ′) where T = {123, 145, 167, 248, 257, 346, 378, 568}

and T ′ = {124, 136, 157, 237, 258, 348, 456, 678}. As in the case of trade T3, the

replication number for each element is 3, and so it is not possible to find a type
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W

X

Y

 ,

in which the sums W, X, and Y consist only of 3s. Thus no decomposition exists.

Trade of volume 8 T6 = (T, T ′) where T = {123, 145, 167, 246, 257, 359, 368, 489}

and T ′ = {124, 136, 157, 235, 267, 389, 459, 468}. The replication numbers for the

elements 1, . . . , 9 are as follows.

Element 1 2 3 4 5 6 7 8 9

Replication number in T 3 3 3 3 3 3 2 2 2

But there is no Latin interchange of size 8 which has type
3 + 3 + 2

3 + 3 + 2

3 + 3 + 2


and thus no decomposition exists.

Trade of volume 8 T7 = (T, T ′) where T = {123, 145, 167, 189, 247, 346, 358, 379}

and T ′ = {124, 136, 158, 179, 237, 345, 389, 467}. The replication numbers for the

elements 1, . . . , 9 are as follows.

Element 1 2 3 4 5 6 7 8 9

Replication number in T 4 2 4 3 2 2 3 2 2

Assume that the Latin interchanges associated with T7 can be decomposed into

six disjoint Latin interchanges; then since volume(T ) = 8, one of these Latin inter-

changes must have type 
3 + 3 + 2

X

Y

 ,

where X and Y represent the appropriate sum values of the number of filled entries

in the rows of the Latin interchange and the number of occurrences of each symbol
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in the Latin interchange. By Lemma 7.2.9, this implies that both row 4 and row

7 are simultaneously non-empty. Moreover, the elements 4 and 7 cannot occur as

symbols. This is a contradiction as 247 ∈ T . Therefore no such decomposition

exists.

Trade of volume 8 T8 = (T, T ′) where T = {127, 138, 28A, 379, 459, 46A, 57A, 689}

and T ′ = {128, 137, 27A, 389, 45A, 469, 579, 68A}. A decomposition exists in which

I1 = (I1, I
′
1) where I1 = {(1, 2; 7), (1, 3; 8), (A, 2; 8), (9, 3; 7), (9, 5; 4), (A, 6; 4),

(A, 5; 7), (9, 6; 8)}.

Trade of volume 8 T9 = (T, T ′) where T = {123, 145, 167, 189, 24A, 268, 279, 35A}

and T ′ = {124, 135, 168, 179, 23A, 267, 289, 45A}. A decomposition exists in which

I1 = (I1, I
′
1) where I1 = {(1, 2; 3), (1, 5; 4), (1, 6; 7), (1, 9; 8), (A, 2; 4), (2, 6; 8), (2, 9; 7),

(A, 5; 3)}.

Trade of volume 8 T10 = (T, T ′) where T = {123, 145, 167, 189, 24A, 35A, 68A, 79A}

and T ′ = {124, 135, 168, 179, 23A, 45A, 67A, 89A}. A decomposition exists in which

I1 = (I1, I
′
1) where I1 = {(1, 2; 3), (1, 5; 4), (1, 6; 7), (1, 9; 8), (A, 2; 4), (A, 5; 3), (A, 6; 8),

(A, 9; 7)}.

Trade of volume 8 T11 = (T, T ′) where T = {123, 145, 167, 189, 24A, 36A, 58A, 79A}

and T ′ = {124, 136, 158, 179, 23A, 45A, 67A, 89A}. A decomposition exists in which

I1 = (I1, I
′
1) where I1 = {(1, 2; 3), (1, 5; 4), (1, 6; 7), (1, 9; 8), (A, 2; 4), (A, 6; 3), (A, 5; 8),

(A, 9; 7)}.

Trade of volume 8 T12 = (T, T ′) where T = {123, 145, 167, 189, 24A, 68B, 79B, 35A}

and T ′ = {124, 135, 168, 179, 23A, 45A, 67B, 89B}. A decomposition exists in which

I1 = (I1, I
′
1) where I1 = {(3, 2; 1), (4, 5; 1), (7, 6; 1), (8, 9; 1), (4, 2;A), (8, 6;B), (7, 9;B),

(3, 5;A)}.

Trade of volume 8 T13 = (T, T ′) where T = {123, 145, 24A, 35A, 678, 69B, 79C,

8BC} and T ′ = {124, 135, 23A, 45A, 67A, 68B, 78C, 9BC}. A decomposition ex-

ists in which I1 = (I1, I
′
1) where I1 = {(3, 2; 1), (4, 5; 1), (4, 2;A), (3, 5;A), (8, 7; 6),

(9, B; 6), (9, 7;C), (8, B;C)}.
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Trade of volume 9 T14 = (T, T ′) where T = {145, 167, 189, 239, 257, 268, 346, 358,

479} and T ′ = {146, 158, 179, 235, 267, 289, 349, 368, 457}. Again the replication

number for each element e is 3. By Lemma 7.2.9, any Latin interchange I1 must

be a 3 × 3 subsquare. Assume that I1 is one of the Latin interchanges into which

the partial Latin square associated with T14 can be decomposed. There are no 3

× 3 subsquares in the partial Latin square associated with T . We can show this

by considering the partial Latin square I1 containing the entry (4, 5; 1). By Lemma

7.2.9, 4 can only occur as a row, and 1 can only occur as a symbol. Because

671 ∈ T , 6 must occur only as a row or column. Assume that 6 occurs only as a

row. In this case, because 346 ∈ T , either (6, 4; 3) or (6, 3; 4) must occur in I1 which

is a contradiction since 4 can only be a row. Thus 6 must occur only as a column.

In this case (7, 6; 1) must be in I1 and thus because 479 ∈ T , (7, 9; 4) or (7, 4; 9)

must be an entry in I1 which is a contradiction since we are assuming that 4 is a

row. Thus no such decomposition exists.

Trade of volume 9 T15 = (T, T ′) where T = {147, 158, 169, 248, 259, 267, 349,

357, 368} and T ′ = {148, 159, 167, 249, 257, 268, 347, 358, 369}. A decomposition ex-

ists where one Latin interchange is given by I1 = (I1, I
′
1) where I1 = {(1, 4; 7),

(1, 5; 8), (1, 6; 9), (2, 4; 8), (2, 5; 9), (2, 6; 7), (3, 4; 9), (3, 5; 7), (3, 6; 8)}.

Trade of volume 9 T16 = (T, T ′) where T = {123, 145, 167, 189, 248, 257, 269, 346,

479} and T ′ = {125, 136, 148, 179, 234, 267, 289, 457, 469}.

The replication numbers for the elements 1, . . . , 9 are as follows.

Element 1 2 3 4 5 6 7 8 9

Replication number in T 4 4 2 4 2 3 3 2 3

Assume (6, 9; 2) ∈ I1, where I1 forms one of the Latin interchanges into which

we are decomposing the partial Latin square associated with T . Then by Lemma

7.2.9 we can say that 6 occurs only as a row, and 9 occurs only as a column. Since

167 ∈ T , then 7 occurs only as a column or symbol, and since 479 ∈ T , then 7

occurs only as a row or symbol. This means that 7 occurs only as a symbol. Thus

{(6, 1; 7), (4, 9; 7)} ⊆ I1. With this information, plus the fact that 257 and 145 are

triples, we have four cases:
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Case 1 {(5, 2; 7), (5, 1; 4)} ⊆ I1. Since (6, 9; 2), (6, 1; 7) and (4, 9; 7) are also in

I1, by Lemma 7.2.9 we find that (6, 3; 4), (1, 3; 2), (1, 9; 8) and (4, 2; 8) must be in

I1. Now it is easy to see that I1 is not a Latin interchange. This is a contradiction.

Case 2 {(5, 2; 7), (5, 4; 1)} ⊆ I1. Since (6, 9; 2), (6, 1; 7) and (4, 9; 7) are also in

I1, by Lemma 7.2.9 we find that (6, 4; 3) ∈ I1. Now either (1, 2; 3) or (2, 1; 3) must

be in I1. But both are impossible by Lemma 7.2.9. So this case is also impossible.

Case 3 {(2, 5; 7), (4, 5; 1)} ⊆ I1. Since (6, 9; 2), (6, 1; 7) and (4, 9; 7) are also in

I1, by Lemma 7.2.9 we find that (8, 9; 1), (8, 4; 2), (6, 4; 3) and (2, 1; 3) must be in

I1. Now it is easy to see that I1 with these entries cannot be a Latin interchange.

This is a contradiction.

Case 4 {(2, 5; 7), (1, 5; 4)} ⊆ I1. Since (6, 9; 2), (6, 1; 7) and (4, 9; 7) are also in

I1, by Lemma 7.2.9 we find that (1, 9; 8) ∈ I1. Now either (4, 2; 8) or (2, 4; 8) must

be in T1. But both are impossible by Lemma 7.2.9.

Thus no decomposition exists.

Trade of volume 9 T17 = (T, T ′) where T = {123, 145, 167, 189, 248, 256, 279, 346,

358} and T ′ = {124, 136, 158, 179, 235, 267, 289, 348, 456}.

The replication numbers for the elements 1, . . . , 9 are as follows.

Element 1 2 3 4 5 6 7 8 9

Replication number in T 4 4 3 3 3 3 2 3 2

Assume (3, 4; 6) ∈ I1, where I1 forms one of the Latin interchanges into which

we are decomposing the partial Latin square associated with T . Then by Lemma

7.2.9 we can say that 3 occurs only as a row, 4 occurs only as a column, and 6

occurs only as a symbol. Since 256 ∈ T , then 5 occurs only as a column or a row,

and since 358 ∈ T , then 5 occurs only as a column or a symbol. This implies that 5

occurs only as a column. However, this leads to a contradiction since if we look at

the triple 145 of T , 4 and 5 must both occur as columns. Thus no decomposition

exists.

Trade of volume 9 T18 = (T, T ′) where T = {123, 145, 167, 248, 369, 378, 49A, 579,

68A} and T ′ = {124, 136, 157, 238, 379, 459, 48A, 678, 69A}.

The replication numbers for the elements 1, . . . , 9, A are as follows.
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Element 1 2 3 4 5 6 7 8 9 A

Replication number in T 3 2 3 3 2 3 3 3 3 2

Assume (1, 2; 3) ∈ I1, where I1 forms one of the Latin interchanges into which we

are decomposing the partial Latin square associated with T . Then by Lemma 7.2.9

we can say that 1 occurs only as a row, 2 occurs only as a column, and 3 occurs only

as a symbol. Since 248 ∈ T , we see that 4 occurs only as a row or a symbol, and

since 145 is a triple, we see that 4 occurs only as a column or a symbol. Therefore,

4 occurs only as a symbol, 5 occurs only as a column, and 8 occurs only as a row.

Since 49A ∈ T , we see that 9 occurs only as a row or a column, and since 579 ∈ T ,

we see that 9 occurs only as a row or a symbol. Therefore, 9 occurs only as a row,

A occurs only as a column, and 7 occurs only as a symbol. However, this leads to a

contradiction since in the triple 378 of T , 3 and 7 must both be symbols. Therefore

no decomposition exists.

Trade of volume 9 T19 = (T, T ′) where T = {123, 145, 167, 189, 24A, 356, 37A, 468,

479} and T ′ = {124, 135, 168, 179, 23A, 367, 456, 489, 47A}. A decomposition exists

in which I1 = (I1, I
′
1) where I1 = {(1, 2; 3), (1, 5; 4), (6, 7; 1), (9, 8; 1), (A, 2; 4), (6, 5; 3),

(A, 7; 3), (6, 8; 4), (9, 7; 4)}.

Trade of volume 9 T20 = (T, T ′) where T = {123, 145, 167, 189, 24A, 368, 39A,

479, 578} and T ′ = {124, 136, 158, 179, 23A, 389, 457, 49A, 678}.

The replication numbers for the elements 1, . . . , 9, A are as follows.

Element 1 2 3 4 5 6 7 8 9 A

Replication number in T 4 2 3 3 2 2 3 3 3 2

Assume (1, 2; 4) ∈ I1, where I1 forms one of the Latin interchanges into which

we are decomposing the partial Latin square associated with T . Then, by Lemma

7.2.9, we can say that 2 occurs only as a column and 4 occurs only as a symbol.

Since 23A ∈ T , we see that A occurs only as a row or a symbol, and since 49A ∈ T ,

we find that A occurs only as a row or a column. Therefore, A occurs only as a row

and we must have (A, 2; 3), (A, 9; 4) ∈ I1. Then we must have (8, 9; 3) ∈ I1. Since

678 ∈ T , we see that 6 occurs only as a column or a symbol, and since 136 ∈ T , we

find that 6 occurs only as a row or a column. Therefore, 6 occurs only as a column

and we must have (8, 6; 7), (1, 6; 3) ∈ I1. However, this leads to a contradiction since
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in the triple 457 of T , 4 and 7 must both be symbols. Therefore no decomposition

exists.

Trade of volume 9 T21 = (T, T ′) where T = {123, 145, 167, 189, 24A, 346, 358, 39A,

479} and T ′ = {124, 136, 158, 179, 23A, 345, 389, 467, 49A}.

The replication numbers for the elements 1, . . . , 9, A are as follows.

Element 1 2 3 4 5 6 7 8 9 A

Replication number in T 4 2 4 4 2 2 2 2 3 2

Assume that the partial Steiner Latin square I associated with T can be decom-

posed into six disjoint Latin interchanges; then, since volume(T ) = 9, one of these

Latin interchanges must have type
W

X

Y

 ,

where W , X and Y are all odd and represent the appropriate sums for the number of

symbols in each row and column and the frequency of each symbol’s occurrence in I,

|Ee(I)|. However it is not possible to partition the multiset {4, 2, 4, 4, 2, 2, 2, 2, 3, 2}

into three multisubsets such that the sum of the entries in each of these multisubsets

is odd. Therefore no such decomposition exists.

Trade of volume 9 T22 = (T, T ′) where T = {123, 145, 167, 189, 24A, 36A, 468, 479,

578} and T ′ = {124, 136, 158, 179, 23A, 457, 46A, 489, 678}.

The replication numbers for the elements 1, . . . , 9, A are as follows.

Element 1 2 3 4 5 6 7 8 9 A

Replication number in T 4 2 2 4 2 3 3 3 2 2

Assume (5, 7; 8) ∈ I1, where I1 forms one of the Latin interchanges into which

we are decomposing the partial Latin square associated with T . Then, by Lemma

7.2.9, we can say that 5 occurs only as a row, 7 occurs only as a column, and 8

occurs only as a symbol. On the other hand, since 167 and 468 are triples of T , we

must have (6, 7; 1), (6, 4; 8) ∈ I1. Now considering the triples 36A and 479 of T , we

have four different cases:
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Case 1 {(6, 3;A), (4, 7; 9)} ⊆ I1 which means that 9 occurs only as a symbol by

Lemma 7.2.9. Then 189 being a triple of T means that both 8 and 9 are symbols.

This is a contradiction.

Case 2 {(6, 3;A), (9, 7; 4)} ⊆ I1 which means that 9 occurs only as a row, A

occurs only as a symbol, and 3 occurs only as a column, by Lemma 7.2.9. Then 189

being a triple of T means that (9, 1; 8) is a entry in I1. Thus 1 occurs as both a

column and a symbol. Since 123 ∈ T , this means that (2, 3; 1) must be an entry in

I1, which means that 2 can only occur as a row. Then 24A being a triple of T means

that (2, 4;A) is an entry of I1. Thus 4 occurs as both a column and a symbol. Then

145 being a triple of T means that (5, 1; 4) must be an entry of I1, since column

1 needs to have two entries in it. It is now easy to see that I1 with these entries

cannot be a Latin interchange. This is a contradiction.

Case 3 {(6, A; 3), (4, 7; 9)} ⊆ I1 which means that 9 occurs only as a symbol by

Lemma 7.2.9, leading to a contradiction as in Case 1.

Case 4 {(6, A; 3), (9, 7; 4)} ⊆ I1 which means that 9 occurs only as a row, A

occurs only as a column, and 3 occurs only as a symbol by Lemma 7.2.9. Then 189

being a triple of T means that that (9, 1; 8) must be an entry in I1. Thus 1 occurs

as both a column and a symbol. Since 123 ∈ T , this means that (2, 1; 3) must be an

entry in I1, which means that 2 can only occur as a row. Then 24A being a triple

of T means that (2, A; 4) must be an entry of I1. Thus 4 occurs as both a column

and a symbol. Then 145 being a triple of T means that (5, 4; 1) must be an entry

of I1, since row 5 needs to have two symbols in it. It is now easy to see that I1

with these entries cannot be a Latin interchange. This is a contradiction. Thus no

decomposition is possible.

Trade of volume 9 T23 = (T, T ′) where T = {123, 145, 167, 248, 368, 49A, 579, 69B,

8AB} and T ′ = {124, 136, 157, 238, 459, 679, 48A, 68B, 9AB}. A decomposition ex-

ists in which I1 = (I1, I
′
1) where I1 = {(3, 2; 1), (4, 5; 1), (7, 6; 1), (4, 2; 8), (3, 6; 8),

(4, A; 9), (7, 5; 9), (B, 6; 9), (B,A; 8)}.

Trade of volume 9 T24 = (T, T ′) where T = {123, 145, 167, 189, 24A, 36A, 49B,

58B, 79A} and T ′ = {124, 136, 158, 179, 23A, 45B, 49A, 67A, 89B}. A decomposition

exists in which I1 = (I1, I
′
1) where I1 = {(3, 2; 1), (4, 5; 1), (7, 6; 1), (8, 9; 1), (4, 2;A),

(3, 6;A), (4, 9;B), (8, 5;B), (7, 9;A)}.
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7.3 Conclusion

Thus in answer to Question 7.1.4, we have developed a theorem which determines

the decomposability of certain Latin interchanges corresponding to Steiner minimal

trades. Also, we have given a definite answer to the question of the decomposability

of the Steiner partial Latin squares corresponding to each Steiner trade of volume

less than or equal to 9.
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Chapter 8

A census of critical sets in the

Latin squares of order at most six

Many papers have examined the problems of determining the smallest and largest

critical sets for particular orders of Latin square, or given examples of critical sets

for small orders of Latin square. We give a brief overview of these papers.

The sizes of smallest critical sets for the Latin squares of orders four and five

were determined in [29, 21]. Howse in [40] finds smallest critical sets for all the Latin

squares of order six. This chapter enumerates all critical sets for each main class of

order six, and Appendix 2 gives examples of each possible size of critical set in each

main class.

Also, a paper [27] by Donovan gave examples of critical sets of order six of all

possible sizes.

Adams and Khodkar in [4] give smallest critical sets for all the Latin squares of

order at most seven. They also find, in [3], smallest weak and smallest totally weak

critical sets for the Latin squares of order at most seven. The size of smallest strong

critical sets in a Latin square has also been considered in the past (see [6]).

This chapter deals with critical sets of different sizes in the Latin squares of order

at most six. First, for each main class of Latin square of order at most six, we cal-

culate every possible critical set. These will be of various sizes. Then, for each main

class of Latin square and possible size of critical set, we determine the main classes

and isotopy classes for this set of critical sets. Next, we determine which of the main

classes of critical sets are strong, near-strong, totally weak, and Bedford-Whitehouse
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totally weak. Some interesting properties concerning the greatest common divisors

of numbers of critical sets across main classes in the 6× 6 Latin squares and ratios

of various kinds are discussed.

Finally, for some of the Latin squares we consider, the possibility of the Latin

square being partitioned into disjoint critical sets is examined.

8.1 Algorithms

To obtain the results presented here, we used two basic algorithms to calculate all

critical sets of a given size m for a given main class of n× n Latin squares.

The first was Algorithm 3.1.1, and the second algorithm used the improvements

noted in Chapter 3. This algorithm divided the Latin square up into disjoint Latin

interchanges, ensuring that each candidate for a critical set had at least one entry

in each of the Latin interchanges.

For the case of the 6 × 6 Latin squares, in the search for critical sets of size

greater than 18, the improvements noted in Chapter 3 were used. We briefly recap

these improvements here. For such subsets examined, the search speed was further

increased by ensuring that no row or column was full and no symbol occurred six

times. Such subsets cannot be critical sets since any entry may be removed from

the relevant row, column or symbol set while maintaining the unique completion

property.

We also use the result of Chapter 4, that lcs(n) ≤ n2 − 3n+ 3, to exclude from

consideration any subset of size greater than 21.

8.2 Tables of results

8.2.1 Explanation of headings

The first column in the tables of results (Tables 8.1, 8.2, 8.3 and 8.4) is the main

class number n.z (LS), followed by the size(s) of the critical set(s) for the main class

(Size), the number of critical sets of that size in the main class (#CS); this is then

followed by the number of isotopy classes (#Iso) and the number of main classes
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Table 8.1: Critical set statistics for Latin squares of order 3

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

3.1 2 9 1 1 1 1 0 0

3 18 1 1 1 1 0 0

of those critical sets (#Main). (The notation n.z denotes main class z in a Latin

square of order n, as in the CRC Handbook of Combinatorial Designs, [16].)

For the next four columns, we consider representatives of each main class of

critical sets, and list the number of critical sets of various “strengths” within the

main classes of critical sets. That is, we calculate how many of the representatives

of each main class of critical set have the various “strengths”. We need only con-

sider representatives of each main class of critical set, since, for example, a strong

critical set remains a strong critical set when the rows, columns and symbols are

interchanged or swapped. Similarly, a near-strong critical set remains near-strong

under permutations or interchanges of rows, columns or symbols. These last four

columns are, in order, the number of near-strong critical sets (#NS), the number of

strong critical sets (#Strong), the number of totally weak critical sets (#TW), and

the number of Bedford-Whitehouse totally weak critical sets (#BWTW).

8.2.2 Latin squares of order 3

There is only one main class, denoted 3.1, for Latin squares of order three [16]:

1 2 3

2 3 1

3 1 2

3.1

For this Latin square, we have the results presented in Table 8.1 concerning the

number of critical sets of every possible size.
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Table 8.2: Critical set statistics for Latin squares of order 4

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

4.1 4 32 1 1 1 1 0 0

5 576 18 4 4 4 0 0

6 128 4 2 2 2 0 0

4.2 5 96 1 1 1 1 0 0

6 432 7 3 3 3 0 0

7 48 1 1 1 1 0 0

8.2.3 Latin squares of order 4

There are two main classes, denoted 4.1 and 4.2, for Latin squares of order four [16]:

1 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

4.1 4.2

For these Latin squares, we have the results presented in Table 8.2 concerning

the number of critical sets of every possible size.

8.2.4 Latin squares of order 5

There are two main classes, denoted 5.1 and 5.2, for Latin squares of order five [16]:

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1

5 3 1 2 4

5.1 5.2
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Table 8.3: Critical set statistics for Latin squares of order 5

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

5.1 6 50 1 1 1 1 0 0

7 1000 10 4 4 4 0 0

8 30900 312 57 57 57 0 0

9 18800 188 37 37 37 0 0

10 2500 25 6 6 6 0 0

5.2 7 600 50 11 10 10 1 1

8 21588 1802 322 311 311 1 1

9 23718 1981 348 348 348 0 0

10 2340 198 39 38 36 2 0

11 216 18 4 4 4 0 0

For these Latin squares, we have the results presented in Table 8.3 concerning

the number of critical sets of every possible size.

8.2.5 Latin squares of order 6

There are twelve main classes, denoted 6.1, . . . , 6.12, for Latin squares of order six

[16]:

1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5

1 2 3 4 5 6

2 1 4 3 6 5

3 4 5 6 1 2

4 3 6 5 2 1

5 6 1 2 4 3

6 5 2 1 3 4

1 2 3 4 5 6

2 1 4 5 6 3

3 4 1 6 2 5

4 5 6 1 3 2

5 6 2 3 1 4

6 3 5 2 4 1

1 2 3 4 5 6

2 1 4 5 6 3

3 4 1 6 2 5

4 5 6 1 3 2

5 6 2 3 4 1

6 3 5 2 1 4

6.1 6.2 6.3 6.4
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1 2 3 4 5 6

2 1 4 5 6 3

3 4 2 6 1 5

4 5 6 2 3 1

5 6 1 3 4 2

6 3 5 1 2 4

1 2 3 4 5 6

2 1 4 5 6 3

3 4 5 6 1 2

4 5 6 3 2 1

5 6 1 2 3 4

6 3 2 1 4 5

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 2 4

4 6 2 5 1 3

5 3 6 1 4 2

6 4 5 2 3 1

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 2 4

4 6 2 5 1 3

5 3 6 2 4 1

6 4 5 1 3 2

6.5 6.6 6.7 6.8

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 2 4

4 6 2 5 3 1

5 4 6 2 1 3

6 3 5 1 4 2

1 2 3 4 5 6

2 1 4 3 6 5

3 5 1 6 4 2

4 6 5 1 2 3

5 3 6 2 1 4

6 4 2 5 3 1

1 2 3 4 5 6

2 1 4 5 6 3

3 4 2 6 1 5

4 6 5 2 3 1

5 3 6 1 2 4

6 5 1 3 4 2

1 2 3 4 5 6

2 3 1 5 6 4

3 1 2 6 4 5

4 6 5 2 1 3

5 4 6 3 2 1

6 5 4 1 3 2

6.9 6.10 6.11 6.12

For these Latin squares, we have the results presented in Table 8.4 concerning

the number of critical sets of every possible size.
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Table 8.4: Critical set statistics for Latin squares of order 6

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

6.1 9 72 1 1 1 1 0 0

11 39384 547 97 97 95 0 0

12 1161036 16149 2740 2541 2513 11 8

13 3634344 50492 8481 7815 7792 19 14

14 886428 12346 2090 1931 1920 10 9

15 80064 1118 202 182 168 8 0

16 3240 45 8 8 8 0 0

17 108 3 1 0 0 0 0

6.2 11 7848 327 60 50 48 3 3

12 658908 27477 4633 4370 4325 35 27

13 3328908 138708 23267 22226 22187 52 36

14 1800228 75035 12617 12267 12263 11 8

15 192480 8022 1362 1354 1351 3 1

16 15840 660 115 113 113 0 0

17 240 10 3 3 3 0 0

6.3 11 1200 10 7 2 2 0 0

12 192360 1603 836 749 748 14 14

13 1837440 15315 7757 7445 7440 33 29

14 1727880 14400 7279 7252 7252 2 2

15 378928 3162 1610 1610 1610 0 0

16 20280 169 90 90 90 0 0

17 840 7 4 4 4 0 0
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Table 8.4 (continued)

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

6.4 10 56 7 5 5 5 0 0

11 34000 4250 2149 2001 1980 16 10

12 1590608 198826 99654 94485 94024 197 136

13 5498076 687262 344044 328754 327801 331 232

14 1931424 241428 120895 116390 115691 58 34

15 168752 21095 10586 10102 9704 137 10

16 13736 1717 871 821 780 24 1

17 148 19 11 9 9 1 1

6.5 10 60 15 9 9 9 0 0

11 42992 10748 5406 5132 5078 30 24

12 1878236 469559 235063 224705 223776 401 292

13 6475142 1618806 809952 778258 776251 648 473

14 2182652 545663 273120 264790 263229 119 76

15 192416 48104 24108 23304 22340 281 28

16 16908 4227 2135 2041 1961 43 3

17 112 28 16 15 15 0 0

6.6 11 12888 358 187 177 175 0 0

12 856908 23803 12005 11191 11155 64 55

13 4097790 113839 57151 54038 53898 162 120

14 1476864 41024 20664 19770 19697 27 23

15 155196 4311 2201 2139 2117 8 4

16 12744 354 186 175 166 3 0

17 216 6 4 4 4 0 0
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Table 8.4 (continued)

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

6.7 12 4752 22 5 3 3 0 0

13 212328 985 183 165 165 5 5

14 893700 4151 736 706 705 3 2

15 545508 2536 465 465 465 0 0

16 125766 583 109 109 109 0 0

17 8208 38 13 13 13 0 0

18 648 3 1 1 1 0 0

6.8 11 3264 408 75 67 66 3 2

12 324608 40576 6817 6023 5986 37 33

13 1826592 228335 38265 35161 35063 123 80

14 1093796 136729 22909 21804 21764 10 8

15 106296 13290 2260 2178 2155 10 1

16 8464 1058 185 175 167 6 1

17 216 27 5 5 5 0 0

6.9 10 24 2 2 2 2 0 0

11 13980 1165 596 546 535 7 7

12 716352 59714 29939 27999 27723 127 84

13 2784264 232027 116246 109378 108885 243 173

14 1065876 88856 44575 42345 42068 24 19

15 85884 7159 3607 3462 3314 72 4

16 6960 580 302 283 259 15 1

17 24 2 2 2 2 0 0
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Table 8.4 (continued)

LS Size #CS #Iso #Main #NS #Strong #TW #BWTW

6.10 10 4 1 1 1 1 0 0

11 13748 3437 587 555 547 6 3

12 858348 214587 35899 33814 33644 169 123

13 3894038 973520 162538 154803 154404 279 195

14 1715492 428873 71685 69560 69375 38 29

15 155000 38753 6513 6355 6232 34 4

16 10540 2635 461 443 423 13 1

17 120 30 6 6 6 0 0

6.11 10 40 10 3 3 3 0 0

11 63540 15885 2673 2617 2590 9 5

12 2292266 573254 95781 92453 92029 96 59

13 7075888 1768972 295196 284917 284027 145 96

14 2203696 550993 91977 88209 87499 39 22

15 188344 47086 7890 7584 7175 161 8

16 17172 4293 729 685 645 35 4

17 36 9 2 1 1 0 0

6.12 11 143208 1326 232 229 228 0 0

12 3518478 32664 5510 5384 5358 7 6

13 9025344 83568 14037 13636 13584 17 14

14 2104704 19506 3315 3146 3107 6 4

15 200340 1855 326 316 297 8 1

16 17820 165 32 29 28 1 0

Dénes and Keedwell [23] point out that, for a given order n, each isotopy class of

n× n Latin squares has a number of Latin squares associated with it, and similarly

each main class of n × n Latin squares has a number of isotopy classes associated

with it. Similarly, for any given main class n.z of n × n Latin squares and given

size of critical set m, if we consider the main classes of critical sets of size m within

the main class n.z, we have several associated isotopy classes of critical sets. In the

same way, if we consider the isotopy classes of critical sets of size m within the main

class n.z, we have several associated critical sets of size m in the main class n.z.
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Table 8.5: Numbers of critical sets in each isotopy class of critical sets

of order six

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12

9 72 - - - - - - - - - - -

10 - - - 8 4 - - - 12 4 4 -

11 72 24 120 8 4 36 - 8 12 4 4 108

12 12,36,72 8,12,24 8 8 4 36 216 8 6,12 4 2,4 54,108

13 36,72 12,24 60,120 4,8 2,4 18,36 108,216 4,8 6,12 2,4 4 108

14 36,72 12,24 60,120 8 4 36 108,216 4,8 6,12 4 2,4 54,108

15 36,72 12,24 24,40,120 4,8 4 36 108,216 4,8 6,12 2,4 4 108

16 72 24 120 8 4 36 54,216 8 12 4 4 108

17 36 24 120 4,8 4 36 216 8 12 4 4 -

18 - - - - - - 216 - - - - -

In Tables 8.5 to 8.8, the head line refers to the twelve main classes of 6× 6 Latin

squares, and the side line refers to the possible sizes of critical sets. For 6× 6 Latin

squares, we consider results related to these observations.

Each isotopy class of critical sets in 6 × 6 Latin squares has between 2 to 216

associated critical sets. This result is given in Table 8.5.

Each main class of critical sets in 6 × 6 Latin squares has either 1, 2, 3 or 6

associated isotopy classes of critical sets. This result is given in Table 8.6.

8.3 Some observations

We define some notation used in the following observations. We shall denote the

number of critical sets of size x in a main class n.z by CS(n, z, x). The number of

isotopy classes of critical sets of size x in a main class n.z shall be denoted IC(n, z, x),

and the number of main classes of these critical sets shall be denoted MC(n, z, x).

The greatest common divisor of the number of critical sets of all sizes in a particular

main class n.z will be referred to as GCDCS(n, z).

We shall concentrate on observations concerning the 6× 6 Latin squares.

We find that when the main class 6.z is fixed and x takes all possible values,

CS(6, z, x) / IC(6, z, x) is in most cases close to an integer constant. There is
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Table 8.6: Numbers of isotopy classes of critical sets in each main class of critical

sets of order six

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12

9 1 - - - - - - - - - - -

10 - - - 1,2 1,2 - - - 1 1 1,3,6 -

11 1,3,6 3,6 1,2 1,2 1,2 1,2 - 3,6 1,2 2,3,6 1,2,3,6 3,6

12 1,2,3,6 1,2,3,6 1,2 1,2 1,2 1,2 1,3,6 1,2,3,6 1,2 1,2,3,6 1,2,3,6 1,2,3,6

13 2,3,6 1,2,3,6 1,2 1,2 1,2 1,2 1,3,6 1,2,3,6 1,2 1,2,3,6 1,2,3,6 3,6

14 1,2,3,6 1,2,3,6 1,2 1,2 1,2 1,2 1,2,3,6 1,2,3,6 1,2 2,3,6 2,3,6 3,6

15 1,2,3,6 1,2,3,6 1,2 1,2 1,2 1,2 1,3,6 3,6 1,2 1,2,3,6 1,3,6 1,2,3,6

16 3,6 3,6 1,2 1,2 1,2 1,2 1,3,6 2,3,6 1,2 1,2,3,6 3,6 3,6

17 3 1,3,6 1,2 1,2 1,2 1,2 1,3,6 3,6 1 3,6 3,6 -

18 - - - - - - 3 - - - - -

one exception: the critical sets of size 17 in main class 6.1, where all other values

of CS(6, 1, x)/IC(6, 1, x) are approximately 72, but CS(6, 1, 17)/IC(6, 1, 17) = 36.

We also find that this integer constant is a multiple of GCDCS(6, z). These ratios

are given in Table 8.7, truncated at two decimal places. The last line tabulates the

values of GCDCS(6, z).

In seven of the twelve main classes (6.1, 6.2, 6.7, 6.8, 6.10, 6.11, and 6.12), the

ratio MC(6, z, x)/IC(6, z, x) is close to 6 with a few exceptions. In the other five

main classes (6.3, 6.4, 6.5, 6.6, and 6.9) this ratio is close to 2 with a few exceptions.

These ratios are given in Table 8.8, truncated at two decimal places.

In each main class 6.z, GCDCS(6, z) is a multiple of 2, and for those main classes

with 3× 3 subsquares (6.1, 6.6, 6.7 and 6.12) this number is a multiple of 18.

We also note that in the main classes of the 4× 4 and 6× 6 Latin squares, the

smallest and largest possible critical sets (4 and 7 for the 4 × 4 case and 9 and 18

for the 6× 6 case) each have only one isotopy and main class.

This is an interesting property which we are unable to explain at the present

time. It may be the case that the enumeration of all critical sets of order 7 would

give more insight into this property.

107



Table 8.7: Ratio of critical sets to isotopy classes of critical sets of order six

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12

9 72.00 - - - - - - - - - - -

10 - - - 8.00 4.00 - - - 12.00 4.00 4.00 -

11 72.00 24.00 120.00 8.00 4.00 36.00 - 8.00 12.00 4.00 4.00 108.00

12 71.89 23.98 120.00 8.00 4.00 36.00 216.00 8.00 11.99 4.00 3.99 107.71

13 71.97 23.99 119.97 7.99 3.99 35.99 215.56 7.99 11.99 3.99 4.00 108.00

14 71.79 23.99 119.99 8.00 4.00 36.00 215.29 7.99 11.99 4.00 3.99 107.90

15 71.61 23.99 119.83 7.99 4.00 36.00 215.10 7.99 11.99 3.99 4.00 108.00

16 72.00 24.00 120.00 8.00 4.00 36.00 215.72 8.00 12.00 4.00 4.00 108.00

17 36.00 24.00 120.00 7.78 4.00 36.00 216.00 8.00 12.00 4.00 4.00 -

18 - - - - - - 216.00 - - - - -

gcd 36 12 2 4 2 18 54 4 12 2 2 54

Table 8.8: Ratio of main classes of critical sets to isotopy classes of critical sets of

order six

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12

9 1.00 - - - - - - - - - - -

10 - - - 1.40 1.66 - - - 1.00 1.00 3.33 -

11 5.63 5.45 1.42 1.97 1.98 1.91 - 5.44 1.95 5.85 5.94 5.71

12 5.89 5.93 1.91 1.99 1.99 1.98 4.40 5.95 1.99 5.97 5.98 5.92

13 5.95 5.96 1.97 1.99 1.99 1.99 5.38 5.96 1.99 5.98 5.99 5.95

14 5.90 5.94 1.97 1.99 1.99 1.98 5.63 5.96 1.99 5.98 5.99 5.88

15 5.53 5.88 1.96 1.99 1.99 1.95 5.45 5.88 1.98 5.95 5.96 5.69

16 5.62 5.73 1.87 1.97 1.97 1.90 5.34 5.71 1.92 5.71 5.88 5.15

17 3.00 3.33 1.75 1.72 1.75 1.50 2.92 5.40 1.00 5.00 4.50 -

18 - - - - - - 3.00 - - - - -
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8.4 Observations concerning the union of critical

sets

For the 4 × 4 and 6 × 6 back-circulant Latin squares it is possible to find four

disjoint critical sets which partition the corresponding Latin square. This can easily

be generalised to the n× n case [2].

If L is any 6 × 6 Latin square it is possible to find three disjoint critical sets of

size 12 which partition L. We give a visual representation of these decompositions

for Latin squares from representatives of each of the main classes, denoted 6.1, . . . ,

6.12.

6.1 =

1

1 2

1 2 3

6 1 2 3

6 5

+

5 6

2 5 6

3 4 5

4 6

4

1

+

1 2 3 4

3 4

6

5

5

2 3 4

6.2 =

1 3 5

1 2

3 6

5 2

6 2 4

+

2 4 6

4

3 4

5 2

1 3

5 3

+

1 3 5

2 6

5 6

4 1

6 4

1
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6.3 =

6

1 3

1 2

5 1

5 2

6 2 4

+

2 4

6 5

3 5

4 3

6 1

3 1

+

1 3 5

2 4

6 4

6 2

4 3

5

6.4 =

1 3 5

1 2

1 3

4 6

6 3 5

+

3 6

2 6

6 4

4 5

2 3

1 4

+

1 2 4 5

4

3 5

6 2

5 1

2

6.5 =

1 3 5

1 2

6 3

5 3

6 5 4

+

3 5 6

2

4 6

4 5

6 2

1 2

+

1 2 4

4 6

3 5

2 1

1 4

3

6.6 =

6

1 3

1

1 2 3

5 2

6 2 4

+

2 3 4

6

3 4 5 6

4 5

4

1

+

1 5

2 4 5

2

6

6 1 3

3 5
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6.7 =

6

1 6 5

1 2

4 2

5 3

4 3

+

2 4 5

2 3

5

6 3

4 1

6 1

+

1 3

4

3 6 4

5 1

6 2

5 2

6.8 =

1 3 5

1 2 4

4 6

3 6

3 2

+

3 4 5

2 6

5

2 3

5 1

4 1

+

1 2 6

4

3 6

5 1

2 4

6 5

6.9 =

1 3 5

1 2 4

6 2

4 1 3

6

+

4 5 6

2

3 5

5 1

6

3 5 4

+

1 2 3

4 6

6

4 3

5 2

1 2
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6.10 =

1 3 5

1 2

1 3

5 6

6 4 3

+

3 4 6

2

5 6

4 2

1 4

2 5

+

1 2 5

4 6

3 4

6 5

3 2

1

6.11 =

1 3

1 5

6 2 3

1 2 4

6 5

+

4 5 6

2 6

2

4 5

3 6

3 4

+

1 2 3

4 5

3 4 6

1

5

1 2

6.12 =

1 5

1 2 6

3

4 2 3

6 4 5

+

3 5 6

2 3 6

4

4 1

6 1

3

+

1 2 4

4

3 5

5 6 2

5

1 2
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Chapter 9

Conclusion

In this thesis, we have developed several new results. The algorithms developed in

Chapter 3 have been used throughout the remainder of the thesis to discover new

bounds and existence results on the sizes of possible critical sets.

We have proved a new bound on lcs(n) in Chapter 4, and given many examples

of critical sets of sizes not previously known.

In Chapter 5, a new bound was given on the maximum number of intercalates

in Latin squares of orders 2αm and 2αm + 1 for α ≥ 2 and m odd (α 6= 3 in the

2αm+ 1 case). Also, a critical set in Latin squares of order 4m was given, and large

critical sets in intercalate-rich Latin squares of orders 11 and 14 were examined.

We have completed the spectrum of critical sets between the bounds conjectured

by Nelder (
n2

4
and

n2 − n
2

). This result was given in Chapter 6.

In Chapter 7, we looked at all trades of volume between 6 and 9, and determined

which of the corresponding partial Steiner Latin squares were decomposable into

disjoint Latin interchanges.

In Chapter 8, the new bound on lcs(n) from Chapter 4 was used to reduce the

search space of critical sets for Latin squares of order 6, and all the critical sets in

Latin squares of order at most six were then determined.

Further research could include determining those values s >
n2 − n

2
for which

there exists a critical set of order n and size s. Instead of looking at the maximum

number of intercalates, we could look at the maximum number of m×m subsquares,

m > 2, in a Latin square of given order.

The questions proposed at the conclusion to Chapter 4 also deserve more re-
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search. That is, is there a relationship between critical sets of size lcs(n) and Latin

squares with I(n) intercalates, and must critical sets with lcs(n) entries have a

missing row, column, and symbol?

Enumerating the critical sets for the Latin squares of order 7 is not possible with

current computer hardware and algorithms, but may become possible in the future.

This would settle the question of what lcs(7) is, and could possibly provide more

information to help prove new bounds on scs(n). Such an enumeration might also

give more information to assist in understanding the patterns noted in Chapter 8.

A further idea for research based on the results of Chapter 8 is to check the

critical sets of size 17 and order 6 for a possible construction for a critical set of size
n2 − n

2
+ 2 for n ≥ 6.

The results of this thesis could possibly also be used in music composition, as

the 20th century composers Karlheinz Stockhausen [69] and Peter Maxwell Davies

[36] have used Latin squares extensively in their compositions.
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Appendix 1

Examples of critical sets

Here we give some examples of large critical sets for n = 5, 7, 9, and 10. By

combining the results of the two papers [31] and [27], and this appendix, we can

show the existence of critical sets of all sizes between bn
2

4
c and the current upper

bound for lcs(n) for 1 ≤ n ≤ 10.

A critical set of order 5 and size 11:

2 4 5

1 2

5 1 2

5 2 1

A critical set of order 7 and size 25:

3 2 7 5

3 5 4 7 6

6 5 4 3 2

4 3 5

4 7 2 6 3

6 3 7
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A critical set of order 9 and size 40:

6 9 1 8 2 4

9 4 2

8 2 1

1 6 5 2

7 2 8 4 9

8 7 5 9 4 1 2

4 9 8 2 6 5 7

2 5 4 9 8

A critical set of order 9 and size 41:

7 1 3

8 4 1

4 3 1 9 5

9 1 7 6 8 4

5 8 4 9 1 6

6 3 1

3 9 1 8 6 5 7

1 5 6 7 3 4 9 8

A critical set of order 9 and size 42:

3 5 6 7 8 9

8 4 5 6

4 3 9 7

9 6 5 8

5 8 4 9 1 3 6

6 5 3

3 9 1 8 6 5

1 5 6 7 3 4 9 8
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A critical set of order 9 and size 43:

3 9 4 6

1 9 8 6

7 9 8 4 6 1 3 2

9 8 3 2 1

8 9 4 2 1

6 1 3 7 9 8

2 9 8 7

4 6 2 1 8 7 9

A critical set of order 9 and size 44:

1 3 5 7

1 2 6 5

3 2 1 6 5 8

1 2 3 4

5 2 1 4 7 3

5 3 2 1 4 6

6 7 4 3 1 2

7 5 6 8 4 3 2 1

A critical set of order 10 and size 56:

1 4 3 6 5 8 7 10 9

4 1 5 6 8

3 1 8 7 5

6 1 3 9 4

5 1 10 4 3

8 5 3 10 1 4 6

7 6 9 1 5 3

10 6 7 3 4 5 1

9 8 5 4 6 3 1
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A critical set of order 10 and size 57:

1 3 5 7 9

1 2 5 6 8

3 2 1 9 6 7 5

1 2 3 8 4

5 2 1 10 4 3

5 9 3 10 1 2 6

7 6 4 2 1 5 3

6 7 8 3 5 1 2

9 8 5 4 6 3 2 1
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Appendix 2

Critical sets in Latin squares of

order 6

This appendix is associated with Chapter 8 and gives examples of critical sets of

all possible sizes in each of the 12 main classes, denoted 6.1 to 6.12, of 6× 6 Latin

squares.

1 2 3

2 3

3

4

4 5

1

1 2

1 2 3

1 2 3 4

6

1

1 2

1 2 3

6 1 2 3

6 5

1

1 2

6 1 2

6 1 2 3

3 4 5

6.1, size 9 6.1, size 11 6.1, size 12 6.1, size 13

1 4

1 2 4 5

1

4 3 1 2

4 5 2

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1

5 1 2

5 6 1 2

6 1 2 4

1 2 3 5

5 6 1

5 1 2

5 6 1 2 3

6 1 3

1 2 3

6.1, size 14 6.1, size 15 6.1, size 16 6.1, size 17
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1 3 5

6 1

3 6 2

5

2 4

1 3 5

1 2

3 6

5 2

6 2 4

1 3 5

1 2

3 5 2

6 1 4

2 4

1 3 5

1 2

3 5 2

1 2 4

5 2 4

6.2, size 11 6.2, size 12 6.2, size 13 6.2, size 14

1 3 5

1 2

3 5 2

1 2 4

6 2 1 3

1 3 5

1 2

3 6 5 2 1

6 1

5 2 1 3

1 3 5

1 2

3 5 2 1

1 2 3

5 2 1 3 4

5 6

1 3

1

4 2

4 1

6 2

6.2, size 15 6.2, size 16 6.2, size 17 6.3, size 11

6

1 3

1 2

5 1

5 2

6 2 4

6

1 3

1 2

1 3 2

5 4

3 5 4

6

1 3

1 2

1 3 2

4 1 3

6 2 4

1 3 5

1 2 4

1 3 2

6 2 1

6 2 4

6.3, size 12 6.3, size 13 6.3, size 14 6.3, size 15

1 3 5

1 2 4

1 3 2

6 2 1

3 5 4 1

1 3 5

1 2 4

1 3 2

4 1 3

3 2 5 4 1

4 6

1

5 1

4 3

6 2 4

1 3 5

1 2

1 3

4 6

6 2

6.3, size 16 6.3, size 17 6.4, size 10 6.4, size 11

1 3 5

1 2

1 3

4 6

6 3 5

1 3 5

1 2

1 3

6 2 3

6 3 1

1 3 5

1 2

1 3

6 2 3

3 5 1 4

1 3 5

1 2

1 3

4 6 2 3

3 2 1 4

6.4, size 12 6.4, size 13 6.4, size 14 6.4, size 15
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1 3 5

1 2

1 3

4 2 3 1

3 2 5 1 4

1 3 5

3 1 2

4 5 1 3

5 4 2

3 2 5 4

6

1 3 5

5

5 1

2 4

2

1 3 5

1 2

5

2 4

1 2 4

6.4, size 16 6.4, size 17 6.5, size 10 6.5, size 11

1 3 5

1 2

2 3 1

5 6

6 2

1 3 5

1 2

2 3 1

2 1 4 3

6

1 3 5

1 2

2 3 1

5 4 3

6 3 2

1 3 5

1 2

2 3 1

6 2 4

1 5 2 4

6.5, size 12 6.5, size 13 6.5, size 14 6.5, size 15

1 3 5

1 2

2 3 1

6 2 1 4

3 1 2 4

1 3 5

1 2

2 3 1

2 1 4 3

3 1 5 2 4

6

1 3

1

4 5

5 6 4

2 4

6

1 3

1

1 2 3

5 2

6 2 4

6.5, size 16 6.5, size 17 6.6, size 11 6.6, size 12

1 3 5

1 2

1 2 3

5 6

6 2 4

1 3 5

1 2

1 2 3

6 1 3

6 2 4

1 3 5

1 2

1 2 3

1 2 3 4

6 2 4

1 3 5

1 2

6 1 2

1 2 3 4

3 5 4 1

6.6, size 13 6.6, size 14 6.6, size 15 6.6, size 16

1 3 5

1 2

1 2 3

1 2 3 4

3 2 5 4 1

6

1

1 2 5

4 5

5 3

2 3 1

1 5

3 6

1 2 3

6 4 1

6 4 5

1 5

1 2 6

1 2 3

6 3 1

6 4 3

6.6, size 17 6.7, size 12 6.7, size 13 6.7, size 14
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1 5

1 2 6

1 2 3

4 3 1 2

6 2 3

1 5

1 2 6

1 2 3

4 3 1 2

4 5 2 1

1 5

1 2 6

5 6 1 2 3

3 1 2

5 2 3 1

1 5

1 2 5 4

1 2 3

4 3 1 2

4 5 2 3 1

6.7, size 15 6.7, size 16 6.7, size 17 6.7, size 18

1 3 6

5 1 4

4 3

6

3 2

1 3 5

1 2 4

4 6

3 6

3 2

1 3 5

1 2 4

2 5

3 4

4 5 2

1 3 5

1 2 4

2 5

3 6 4

4 3 2

6.8, size 11 6.8, size 12 6.8, size 13 6.8, size 14

1 3 5

1 2 4

2 5

5 6 4 1

6 5 2

1 3 5

1 6 2

6 2 1 3

3 6 4 1

1 3

1 3 5

3 5 4

4 5 1 3

5 3 4 1

4 3 2

6

1 4 3

5 1

4 1

6 2

6.8, size 15 6.8, size 16 6.8, size 17 6.9, size 10

1 3 5

1 6 2

2

5 4 3

3

1 3 5

1 2 4

2 5

6 2 1

3

1 3 5

1 2 4

2 5

6 2 1

6 4

1 3 5

1 2 4

2 5

2 1 3

3 5 4

6.9, size 11 6.9, size 12 6.9, size 13 6.9, size 14

1 3 5

1 2 4

4 6

5 4 6 3

6 3 5

1 3 5

3 2 4

4 5 3 1

5 4 2 1 3

2

2 3 4 5 6

4 3 5

5 4

4 6 3

3 5 4 2

1 5 6

3

1

4

3 2

6 1

6.9, size 15 6.9, size 16 6.9, size 17 6.10, size 10
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6

1 3

1

4

3 2 1

6 5 3

1 3 5

1 2

1 3

5 6

6 4 3

1 3 5

1 2

6 1

3 6 1

6 2 5

1 3 5

1 2

1 3

3 2 1 4

6 4 3

6.10, size 11 6.10, size 12 6.10, size 13 6.10, size 14

1 3 5

1 2

1 3

3 6 2 1

4 2 3 1

1 3 5

1 2

1 3

3 2 1 4

4 2 5 3 1

1 3 6

1 6

6 5 1 2 3

3 6 2 1

5 3 1

6

2 1

4 1

3

3 1

6 2

6.10, size 15 6.10, size 16 6.10, size 17 6.11, size 10

1 3

1 5

2 3 1

5 6

6 2

1 3

1 5

2 3 1

6 1 2

6 5

1 3

1 5

2 3 1

5 2 4

6 3 4

1 3

1 5

2 3 1

5 2 4

1 3 4 2

6.11, size 11 6.11, size 12 6.11, size 13 6.11, size 14

1 3

1 5

2 3 1

3 6 1 2

1 3 4 2

1 3

1 5

2 3 1

3 1 2 4

5 1 3 4 2

1 5 6

3 4 6 1

6 3

3 6 1

6 5 1 3 4

1 5

1 2 6

3

4 2 3

6 3

6.11, size 15 6.11, size 16 6.11, size 17 6.12, size 11

1 5

1 2 6

3

4 2 3

6 4 5

1 5

1 2 6

3

4 1 2 3

4 5 2

1 5

1 2 6

3

6 4 2 3

4 3 1 2

1 5

1 2 6

2 1

4 1 2 3

4 5 3 2

6.12, size 12 6.12, size 13 6.12, size 14 6.12, size 15
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1 5

1 2 6 4

5 6 2 1

5 6 4 1

4 5

6.12, size 16
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Appendix 3

Construction for Latin

interchanges in a back-circulant

array

This Appendix gives a construction for Latin interchanges referred to in Chapter 6,

which are called “Variety 3” Latin interchanges there.

The construction given here is that of [31], and results in a Latin interchange I in

a back-circulant Latin square. Recall that the completion of the critical set D given

in Theorem 4.3.1 resulted in an n× n Latin square, denoted LD, of which the first
n

2
rows were the same as an n × n back-circulant Latin square. D contains entries

from the first
n

2
rows of LD, and the following result gives a Latin interchange I

which intersects D in any given cell (x, y) in those rows.

Let A denote the Latin subrectangle in LDT (the transpose of LD) bounded by

the entries (x, y; y+x), (n−1, y; y−1), (x,
n

2
−1;

n

2
−1+x), and (n−1,

n

2
−1;

n

2
−2).

All future row and column references are relative to this subrectangle; that is, a

reference to the entry (i, j; k) means the entry (i− x, j − y; k) in LDT .

Let c =
n

2
− y, r = n− x, and e = n+ 1− c.
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Define the sequence of numbers α1, α2, ..., αP to be integers where

α1 = c− 1 (mod e) and, for i ≥ 2,

αi = αi−1 (mod (e− α1 − ...− αi−1)).

Let P be the value such that αP 6= 0 and αP+i = 0 for all i > 0. For i = 1, 2, ..., P ,

let δi = α1 + α2 + ...+ αi. Define

A0 = {(0, 0;x+ y), (0, c− 1; c− 1 + x+ y)}, and if α1 6= c− 1 define

B0 = {(c− 1− ae, ae; c− 1 + x+ y), (c− 1− ae, (a+ 1)e;x+ y)

| 0 ≤ a ≤ c− 1− α1

e
− 1}.

If α1 6= 0, define

A1 = {(e, c− 1− α1; c− 1 + e− α1 + x+ y), (e, c− 1;x+ y)},

and if α1 6= α2 define

B1 = {(α1 − a(e− α1), c− 1− α1; c− 1 + x+ y),

(α1 − a(e− α1), c− 1− α1 + (a+ 1)(e− α1); c− 1 + e− α1 + x+ y)

| 0 ≤ a ≤ α1 − α2

e− α1

− 1}.

If P ≥ 2, for 2 ≤ i ≤ P , define

Ai = {(e− δi−1, c− 1− αi; c− 1 + e− δi + x+ y),

(e− δi−1, c− 1; c− 1 + e− δi−1 + x+ y)}

and if αi 6= αi+1, define

Bi = {(αi − (e− δi)a, c− 1− αi + a(e− δi); c− 1 + x+ y),

(αi − a(e− δi), c− 1− αi + (a+ 1)(e− δi); c− 1 + e− δi + x+ y) |

0 ≤ a ≤ αi − αi+1

e− δi
− 1}.

Then the set I = A0∪B0∪A1∪B1∪ ...∪AP ∪BP is the required Latin interchange.
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