k-homogeneous latin trades

Richard Bean, Hoda Bidkhori, Maryam Khosravi and E. S. Mahmoodian

Abstract

Let T be a partial latin square and L a latin square such that $T \subset L$. Then T is called a *latin trade*, if there exists a partial latin square T^* such that $T^* \cap T = \phi$ and $(L \setminus T) \cup T^*$ is a latin square. We call T^* a *disjoint mate* of T. A latin trade is called *k*-homogeneous if each row and each column contains exactly k elements, and each element appears exactly k times. The number of elements in a latin trade is referred to as its *volume*.

It is shown by Cavenagh, Donovan, and Drápal (2003 and 2004) that 3-homogeneous and 4-homogeneous latin trades of volume 3m and 4m, respectively, exist for all $m \ge 3$ and $m \ge 4$, respectively. We show that k-homogeneous latin trades of volume km exist for all $3 \le k \le 8$ and $m \ge k$. Also we show that for each given $k \ge 3$ and for $m \ge k$, all k-homogeneous latin trades of volume km exist except possibly for finitely many m, i.e. k < m < 2k + 20.

1 Introduction

A *latin square* L of order n is an $n \times n$ array of the set, say $N = \{0, 1, 2, ..., n-1\}$, where each element of N appears exactly once in each row and exactly once in each column. We can represent each latin square as a set of 3-tuples

 $L = \{(i, j; k) \mid \text{element } k \text{ is located in position } (i, j) \}.$

A *transversal* of a latin square of order n is a set of n positions, no two in the same row or same column, containing each elements of the set N exactly once.

A partial latin square P of order n is an $n \times n$ array of elements from the set N, where each element of N appears at most once in each row and at most once in each column. The set $S_P = \{(i, j) | (i, j; k) \in P\}$ of the partial latin square P is called the *shape* of P and $|S_P|$ is called the *volume* of P.

For each $0 \le r, c, e \le n-1$ we introduce the following sets:

 $C_P^c = \{k | (i,c;k) \in P\}, R_P^r = \{k | (r,j;k) \in P\} \text{ and } E_P^e = \{(i,j) | (i,j;e) \in P\}.$

We call a partial latin square T of order n a *latin trade* if there exists a partial latin square T^* of order n, called a mate of T, such that:

 $S_T = S_{T^*}$, and if $(i, j; k) \in T$ and $(i, j; k^*) \in T^*$, then $k \neq k^*$,

for each $r, 0 \le r \le n-1$, we have $R_T^r = R_{T*}^r$; and for each $c, 0 \le c \le n-1$, we have $C_T^c = C_{T*}^c$.

A latin trade is called *k*-homogeneous if:

for each $r, 0 \le r \le n-1$, we have $|R_T^r| = 0$ or k;

for each $c, 0 \le c \le n-1$, we have $|C_T^c| = 0$ or k; and

for each $e, 0 \le e \le n-1$, we have $|E_T^e| = 0$ or k.

A latin trade of volume 4 is called an *intercalate*. In Figure 1 an intercalate (T, T^*) is shown. The elements of T^* is written as subscripts in the same array as T.

($)_{1}$	1_{0}	
-	10	0_{1}	

Figure 1: An intercalate

For more background on latin trades see [2], [6], and [5], and concepts which are not defined here may be found in [1]. It is proved in [4] and [3], that 3homogeneous Latin trades of volume 3m exist for all $m \ge 3$, and 4-homogeneous latin trades of volume 4m exist for all $m \ge 4$. We prove that for each given $k \geq 3$ and for $m \geq k$, all k-homogeneous latin trades of volume km exist except possibly for finitely many m. We also show that for $3 \le k \le 8$ and $m \ge k$, k-homogeneous latin trades of volume km exist. It is obvious that we can omit empty rows and columns of a latin trade. Hence without loss of generality, we can assume any k-homogeneous latin trade of volume km is located in an $m \times m$ square.

2 **Results**

For each k, there exists at least a k-homogeneous latin trade of volume k^2 . To see this, for a latin square L of order k, we can take L^* to be a latin square with a cyclic permutation on the rows of L. So L^* is a disjoint mate of L.

Theorem 1 If $l \neq 2, 6$ and for each $k \in \{k_1, \ldots, k_l\}$ there exists a k-homogeneous latin trade of volume kp, then a $(k_1 + \cdots + k_l)$ -homogeneous latin trade of volume $(k_1 + \cdots + k_l)lp$ exists. (Some k_is can possibly be zero).

Proof. Since $l \neq 2, 6$, there exist two $l \times l$ orthogonal latin squares. Denote one of them by L and partition L into l transversals. Consider disjoint sets A_1, A_2, \ldots, A_l , each with p elements. Then, if $k_i \neq 0$ replace the element j in the *i*-th transversal of L by a k_i -homogeneous latin trade of volume $k_i p$ with elements taken from A_j , and if $k_i = 0$, then we replace each element of *i*-th transversal by an empty $p \times p$ square.

A latin square is *self-orthogonal* if it is orthogonal to its transpose. A self-orthogonal latin square (SOLS) of order n will be denoted by SOLS(n).

Theorem 2 For each k > 2, a k-homogeneous latin trade of volume k(k + 1) exists.

Proof. By Theorem 6.1.3 of [1],on page 139, we know that SOLS(n) exists for every $n \neq 2, 3$, and 6. By deleting the main diagonals in an SOLS(n) and in its transpose, we obtain (n-1)-homogeneous latin trade of volume n(n-1) with its disjoint mate. An example of a 5-homogeneous latin trade of volume 30 is shown in Figure 2.

·	3_{2}	$^{2}3$	0_{4}	45	50
52	4_{1}	0_4	·	1_{0}	2_{5}
4_3	1_{4}	•	2_{0}	3_{1}	0_{2}
0_4	53	4_{0}	1_5	·	3_{1}
$^{2}5$	·	3_{1}	4_{2}	5_4	1_3
3_{0}	2_{5}	1_{2}	5_{1}	0_{3}	•

Figure 2: A 5-homogeneous latin trade of volume 30.

And this example completes the proof.

Theorem 3 Any 2-homogeneous latin trade can be partitioned into disjoint intercalates.

Proof. We prove by induction. Suppose *T* is a 2-homogeneous latin trade of volume 2m. Without loss of generality, we may let $\{(0,0;0), (0,1;1), (1,0;1)\} \subseteq T$. Then *T* must contain (1,1;0). We can apply the same argument to the $(m-2) \times (m-2)$ subsquare obtained by removing rows 0 and 1, and columns 0 and 1. This completes the proof.

Theorem 4 For every k, if there exists a k-homogeneous latin trade of volume km and a k-homogeneous latin trade of volume kn, then for each r and $s \ge 0$, there exists a k-homogeneous latin trade of volume k(rm + sn).

Proof. Let T_1, \ldots, T_r be k-homogeneous latin trades of volume km and T_{r+1}, \ldots, T_{r+s} be k-homogeneous latin trades of volume kn such that for each $i, 1 \le i \le r$ elements of T_i are in the set $\{(i-1)m+1, \ldots, im\}$ and for each $j, 1 \le j \le s$ elements of T_{j+r} are in the set $\{rm + (j-1)n + 1, \ldots, rm + jn\}$. The following latin trade is a k-homogeneous latin trade of volume k(rm + sn).

Corollary 5 For each k and m where $m \ge k^2$, there exists a k-homogeneous latin trade of volume km.

Proof. If $m \ge k^2$, then we can write m as m = rk + s(k + 1), where $r, s \ge 0$. Theorem 4 and Theorem 2 lead us to conclusion.

Theorem 6 If (m, k) = d, $m \ge k$, and d > 1, then there exists a k-homogeneous latin trade of volume km.

Proof. For m = k, the theorem is trivial. Now suppose that $m \neq k$, so $\frac{m}{d} \geq 2$. Let $m' = \frac{m}{d}$ and $k' = \frac{k}{d}$. We construct a k-homogeneous latin trade of volume km in the following way. Consider an $m' \times m'$ latin square L on the set $\{1, 2, \ldots, m'\}$. We replace each i in L with,

- a *d*-homogeneous latin trade of volume d^2 whose elements are from the set $\{(i-1)d+1, \ldots, id\}$, if $1 \le i \le k'$; and
- an empty $d \times d$ array, if $k' + 1 \le i \le m'$.

So we obtain a k-homogeneous latin trade of volume km. Note that its mate can be obtained by replacing each d-homogeneous latin trade of volume d^2 with its mate. In Figure 3, we have an example of the case k = 3d and m = 5d.

T_1	T_2	T_3	•	•	T_{1}^{*}	T_2^*	T_3^*	•	٠
٠	T_1	T_2	T_3	•	٠	T_{1}^{*}	T_2^*	T_{3}^{*}	٠
٠	•	T_1	T_2	T_3	٠	•	T_1^*	T_{2}^{*}	T_3^*
T_3	•	•	T_1	T_2	T_3^*	•	•	T_{1}^{*}	T_2^*
T_2	T_3	٠	٠	T_1	T_2^*	T_{3}^{*}	٠	٠	T_{1}^{*}

k-homogeneous latin trades

Figure 3: A latin trade is constructed for $k^{'} = 3$ and $m^{'} = 5$

By using Theorem 6 and Theorem 3, we have the following corollary:

Corollary 7 For any $m \ge 1$, there exists a 2-homogeneous latin trade of volume 2m, if and only if m is an even number.

Theorem 8 For any m = 4l and $2 \le k \le m$, there exists a k-homogeneous latin trade of volume km.

Proof. It is easy to see that theorem holds for l = 1. Also we may assume that m > k.

First, we prove the theorem in the case that $l \neq 2, 6$. We have the following cases to consider:

- 1. k is even. This case follows from Theorem 6.
- 2. k = 4l' + 1. This case follows from Theorem 1. Indeed, we set p = 4 and $k_i = 4$ for $1 \le i \le l' 1$, $k_{l'} = 2$, $k_{l'+1} = 3$, and $k_i = 0$ otherwise.
- 3. k = 4l' + 3. This case also follows from Theorem 1, by setting p = 4 and $k_i = 4$ for $1 \le i \le l'$, $k_{l'+1} = 3$, and $k_i = 0$ otherwise.

Next, we study the cases l = 2 and l = 6. Actually for m = 8 or 24, the statement follows from Theorem 1, Theorem 2, Theorem 4 and Theorem 6, by choosing proper k_i s and p, except the case m = 8 and k = 5. The existence of the last case is shown in Appendix.

Theorem 9 For any m = 5l and $3 \le k \le m$, there exists a k-homogeneous latin trade of volume km.

Proof. Theorem trivially holds for l = 1. We may also assume that m > k. First, we prove the theorem in the case that $l \neq 2$ and 6. We have the following cases to consider:

- 1. k = 5l'. Obviously this case follows from Theorem 6.
- 2. k = 5l' + 1. This case follows from Theorem 1. Indeed, we set $k_i = 5$ for $1 \le i \le l' 1$ and $k_{l'+1} = k_{l'} = 3$ and $k_i = 0$ for $l' + 2 \le i \le l$ and p = 5.
- 3. k = 5l' + 2. This case follows from Theorem 1, if we set $k_i = 5$ for $1 \le i \le l' 1$ and $k_{l'} = 3$ and $k_{l'+1} = 4$ and $k_i = 0$ for $l' + 2 \le i \le l$ and p = 5.

4. $k = 5l^{'} + r$, r = 3, 4. This case also follows from Theorem 1, if we set $k_i = 5$ for $1 \le i \le l'$, $k_{l^{'}+1} = r$, and $k_i = 0$ for $l^{'} + 2 \le i \le l$, and p = 5.

Next, for the case l = 2, by Theorem 1, Theorem 2, Theorem 4, and Theorem 6, we can show that there exists a k-homogeneous latin trade of volume 10k for any $3 \le k \le 10$ and $k \ne 7$. For k = 7, a 7-homogeneous latin trade of volume 70 is shown in Appendix.

If l = 6, by using Theorem 1, Theorem 2, Theorem 4 and Theorem 6, we can construct a k-homogeneous latin trade of volume 30k for any $3 \le k \le 30$, by using k_i -homogeneous latin trades of volume $6k_i$, where $k_1 + k_2 + k_3 + k_4 + k_5 = k, 0 \le k_i \le 6$ and $k_i \ne 1$ for any $i, 1 \le i \le 5$.

Theorem 10 For any $k \ge 3$ and $m \ge 2k + 20$, there exists a k-homogeneous latin trade of volume km.

Proof. Consider an arbitrary $m \ge 26$. We can represent it as m = 4r + 5s, where r and s are positive integers. It is not hard to see that $s \equiv m \pmod{4}$ and $r \equiv 4m \pmod{5}$. So we can conclude that, there exist unique $0 \le r' \le 4$ and $0 \le s' \le 3$, such that r = 5a + r' and s = 4b + s', where $a, b \ge 0$. It yields that m = 4r + 5s = 4(5a + r') + 5(4b + s'). We conclude that $a + b = \frac{m - 4r' - 5s'}{20}$ is a constant number. Now we have two following cases:

- a + b is even. In this case set a = b.
- a + b = 2t + 1. If 5s' > 4r', set a = t + 1 and b = t, otherwise set a = t and b = t + 1.

In each of these cases, we have $|4r - 5s| \le 20$. And we have m = 4r + 5s, where $4r, 5s \ge m/2 - 10$. By Theorem 8 and Theorem 9, for any $3 \le k \le m/2 - 10$ we have k-homogeneous latin trades of volume 4kr and 5ks. Now by Theorem 4, we conclude that there exists a k-homogeneous latin trade of volume 4kr + 5ks.

The following theorem results immediately from Theorem 10.

Main Theorem 1 For each given $k \ge 3$, and for $m \ge k$, all k-homogeneous latin trades of volume km exist except possibly for finitely many m.

Theorem 11 Consider an arbitrary natural number k. If for any $k + 1 \le m \le 2k - 1$ there exists a k-homogeneous latin trade of volume km, then for any $m \ge k$ there exists a k-homogeneous latin trade of volume km.

Proof. For any $m \ge 2k$, we can write m = rk + sl, where $r, s \ge 0$ and $k + 1 \le l \le 2k - 1$. Since there exist k-homogeneous latin trades of volume k^2 and kl, by Theorem 4 we conclude that there exists a k-homogeneous latin trade of volume km.

Main Theorem 2 For any $3 \le k \le 8$ and $m \ge k$, there exists a k-homogeneous latin trade of volume km.

Proof. For k = 3 or k = 4 the theorem is proved in [4] and [3], respectively. By Theorem 11, we only need to show the existence of a k-homogeneous latin trade of volume km, for each $5 \le k \le 8$ and $k + 1 \le m \le 2k - 1$. If m = k + 1 statement follows from Theorem 2. For m > k + 1, we consider the following four cases:

- Case 1. k = 5.
- m = 7. An example of a 5-homogeneous latin trade of volume 35 is given in Appendix.
- m = 8. It follows from Theorem 8.
- m = 9. It follows from Theorem 1, by setting $k_1 = 0$, $k_2 = 2$, $k_3 = 3$ and p = 3.
- Case 2. k = 6.

m = 8,9 or 10. All follow from Theorem 6.

m = 11. An example of a 6-homogeneous latin trade of volume 66 is given in Appendix.

• Case 3. k = 7.

m = 9. It follows from Theorem 1, by setting $k_1 = 2, k_2 = 2, k_3 = 3$ and p = 3.

m = 10. It follows from Theorem 9.

m = 12. It follows from theorem 8.

m = 11 or m = 13. Examples of 7-homogeneous latin trades of volume 77 and 91 is given in Appendix.

• Case 4. k = 8.

m = 10, m = 12 or m = 14. It follows from Theorem 6.

m = 15. It follows from Theorem 9.

m = 11 or m = 13. Examples of 8-homogeneous latin trades of volume 88 and 104 are given in Appendix.

3 Future Research

For future research, we could look at ensuring the latin trades we create are minimal. When we wish to determine if a set of entries is a subset of exactly one latin square, it is faster to use only minimal latin trades. Thus, we can look at the problem of whether minimal k-homogeneous latin trades of volume km exist for all k and m.

References

- Ian Anderson. Combinatorial designs: Construction Methods. John Wiley & Sons, Inc., New York, 1990.
- [2] Elizabeth J. Billington. Combinatorial trades: a survey of recent results. In *Designs*, 2002, volume 563 of *Math. Appl.*, pages 47–67. Kluwer Acad. Publ., Boston, MA, 2003.
- [3] Nicholas Cavenagh, Diane Donovan, and Aleš Drápal. 4-homogeneous latin trades. Australasian Journal of Combinatorics, to appear.
- [4] Nicholas J. Cavenagh, Aleš Drápal, and Diane Donovan. 3-homogeneous latin trades. *Preprint*.
- [5] A. D. Keedwell. Critical sets for Latin squares, graphs and block designs: a survey. *Congr. Numer.*, 113:231–245, 1996. Festschrift for C. St. J. A. Nash-Williams.
- [6] A. D. Keedwell. Critical sets in latin squares and related matters: an update. *Util. Math.*, 65:97–131, 2004.

Author's addresses:

Richard Bean: Institute for Studies in Theoretical Physics and Mathematics, P. O. Box 19395-5746, Tehran, I. R. Iran.

Hoda Bidkhori and E. S. Mahmoodian: Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11365–9415, Tehran, I. R. Iran.

Maryam Khosravi: Department of Mathematical Sciences, Teacher's Training University, Tehran, I. R. Iran.

4 Appendix

In the following all required k-homogeneous latin trades for the mentioned results are given.

5-homogeneous latin trades of

volume 35 and 40:

2_{0}	4_{2}	0_{1}	3_{4}	1_{3}	•	•
$^{3}2$	5_{1}	2_{0}	0_{5}	•	1_{3}	•
·	·	4_{2}	5_{6}	2_{5}	3_{4}	63
•	2_{5}	1_{6}	6_{3}	•	5_{1}	$^{3}2$
63	1_{6}	·	4_{0}	3_4	•	0_{1}
5_{6}	•	64	·	4_{2}	0_5	2_{0}
0_{5}	64	•	•	5_{1}	4_{0}	1_{6}

7_{0}	0_{1}	$^{3}2$	2_3	•	•	•	1_7
0_{1}	1_{0}	4_{3}	$^{3}2$	•	2_{4}	•	·
·	·	•	7_{1}	1_{6}	6_{7}	5_{4}	4_{5}
•	4_{2}	•	•	67	7_6	2_{5}	5_4
•	2_{5}	5_{6}	6_{7}	7_0	•	0_{2}	•
65	5_{4}	•	1_6	31	•	4_{3}	•
1_{6}	•	64	•	•	4_{3}	30	0_{1}
57	•	25	•	0_3	$^{3}2$	•	7_0

A 6-homogeneous latin trade of volume 66 and a 7-homogeneous latin trade of volume 70:

•	•	6_{2}	•	•	7_{5}	5_{6}	a_7	2_{8}	•	8a
9_{1}	•	•	7_{4}	•	•	a_7	1_8	89	4a	•
•	63	•	0_{5}	$^{3}6$	87	7_{8}	•	•	5_{0}	•
83	•	2_{5}	•	•	1_{8}	•	5a	·	a_1	$^{3}2$
1_{4}	•	76	4_{7}	•	•	6a	•	31	•	a_3
•	76	97	•	1_{9}	•	•	2_{1}	4_{2}	•	64
•	$^{3}7$	•	2_{9}	•	4_{0}	•	7_{2}	93	0_{4}	•
•	•	0_9	•	90	5_{1}	•	•	1_4	65	4_{6}
3_8	09	•	90	61	•	83	•	•	1_{6}	•
a_9	9a	$\overline{5}_0$	•	0_{2}	•	•	85	•	•	2_{8}
4a	a_0	•	52	2_{3}	0_{4}	$^{3}5$	•	•	•	•

•	•	•	$^{3}2$	1_3	59	25	7_{1}	87	9_{8}
•	•	•	7_3	5_{4}	$^{3}5$	4_{6}	87	9_{8}	69
·	52	•	•	7_{5}	0_{1}	1_7	98	2_{9}	80
1_{2}	9_{3}	5_4	0_{5}	•	•	•	$^{3}9$	4_{0}	2_{1}
2_{3}	3_{4}	75	5_{6}	0_{7}	•	•	6 ₀	•	4_{2}
59	4_{5}	9_{1}	2_{7}	•	64	•	1_{6}	7_{2}	•
75	86	0_{7}	68	·	4_{0}	5_{1}	•	•	1_4
81	•	48	•	2_{0}	1_{6}	$^{3}2$	0_{3}	6_{4}	•
97	68	1_9	80	3_{1}	•	7_3	•	•	06
$^{3}8$	2_{9}	80	•	4_{2}	93	64	•	0_{6}	•

•	•	•	•	64	4_{5}	96	87	a_8	59	7a
•	•	•	84	•	76	6_{7}	a_8	0_9	9a	4_{0}
•	•	•	7_{5}	0_{6}	6_{7}	58	•	8a	1_{0}	a_1
53	9_{4}	0_{5}	•	•	•	3_{9}	1a	4_{0}	a_1	•
64	75	5_{6}	4_{7}	٠	•	•	2_{0}	•	$^{3}2$	0_{3}
4_{5}	5_{6}	•	1_{8}	•	•	•	61	$^{3}2$	2_{3}	8_{4}
86	6_{7}	a_8	2_{9}	3a	•	•	7_{2}	9_{3}	•	•
9_{7}	•	1_9	•	4_{0}	5_{1}	7_{2}	•	2_{4}	0_{5}	•
7_{8}	$\overline{a_9}$	9a	•	2_{1}	1_2	83	•	•	•	3_{7}
$\overline{39}$	$\overline{0}_{a}$	80	9_{1}	a_2	$\overline{2}_3$	ē	•	ē	•	1_8
•	4_{0}	61	52	1_3	$^{3}4$	2_5	0_{6}	÷	•	•

A 7-homogeneous latin trades of volume 77:

A 7-homogeneous latin trade of volume 91:

•	•	•	•	9_{4}	•	7_{6}	4_{7}	$\overline{a_8}$	c_9	$\overline{6}a$	•	$\overline{8}_{c}$
•	•	•	9_{4}	•	0_{6}	6_{7}	•	79	b_a	a_b	•	4_{0}
•	•	•	•	a_6	•	•	69	b_a	${}^{9}b$	0c	1_0	c_1
53	•	c_5	•	•	•	•	·	2_b	3c	b_0	0_{1}	1_{2}
•	65	1_6	b_7	•	•	•	7_b	•	•	5_{1}	$^{3}2$	2_{3}
9_{5}	0_{6}	•	4_{8}	69	•	•	•	80	•	•	5_{3}	3_{4}
•	b_7	9_{8}	a_9	4a	2_b	•	•	•	7_{2}	•	84	•
$^{3}7$	7_8	59	8a	•	•	•	•	$9{2}$	a_3	•	25	•
a_8	•	8a	1_b	0c	b_0	5_{1}	•	•	•	c_5	•	•
89	•	•	•	2_{0}	61	$^{3}2$	9_{3}	•	·	1_{6}	•	0_{8}
c_a	8_b	a_c	•	•	$^{3}2$	2_{3}	b_4	•	·	•	4_{8}	•
•	5c	•	7_{1}	c_2	4_{3}	1_4	3_{5}	•	2_{7}	•	•	•
7c	c_0	6_{1}	•	•	1_4	4_{5}	5_{6}	$\overline{0}_7$	•	•	•	•

•	•	•	4_{3}	3_{4}	65	5_{6}	87	9_{8}	a_9	7a
•	ě	÷	5_{4}	0_{5}	4_{6}	6_{7}	7_{8}	89	9a	a_0
•	ě.	٠	7_{5}	1_{6}	57	⁹ 8	a_9	0a	60	⁸ 1
4_3	0_{4}	a_5	•	•	·	2_{9}	9a	1_{0}	51	$^{3}2$
5_4	6_{5}	7_{6}	2_{7}	٠	•	•	1_{0}	$^{3}1$	0_{2}	4_{3}
7_5	5_{6}	87	38	•	•	•	6_{1}	4_{2}	2_{3}	1_{4}
$^{3}6$	97	6_{8}	89	2a	7_{0}	•	0_{2}	a_3	•	•
9_{7}	7_{8}	5_{9}	•	4_{0}	0_{1}	82	•	24	1_{5}	•
a_8	89	9a	•	61	1_{2}	7_3	•	•	$^{3}6$	2_{7}
89	4a	1_0	9_{1}	a_2	$\overline{2}_3$	3_{4}	•	•	•	08
$\overline{6}a$	a_0	0_{1}	1_{2}	$\overline{5}_3$	3_{4}	4_{5}	$\overline{2}_{6}$	•	•	•

An 8-homogeneous latin trades of volume 88:

An 8-homogeneous latin trades of volume 104:

•	•	•	•	•	b_5	5_{6}	87	7_{8}	a_9	6a	c_b	9c
•	•	•	b_4	•	•	87	⁹ 8	4_{9}	7a	a_b	0c	c_0
•	•	•	•	a_6	•	⁹ 8	69	b_a	c_b	0_{c}	1_0	81
c_3	•	b_5	•	•	•	3_{9}	·	2_b	9c	1_{0}	5_{1}	0_{2}
5_4	75	0_{6}	17	•	•	•	•	•	6_0	2_{1}	$^{3}2$	4_{3}
85	⁹ 6	6_{7}	7_{8}	3_{9}	•	•	•	•	•	52	4_{3}	2_{4}
4_{6}	87	7_{8}	a_9	6a	1_b	•	•	9_{1}	•	•	b_4	•
$^{3}7$	c_8	•	8a	•	5c	7_{0}	•	a_2	0_{3}	•	2_{5}	•
a_8	b_9	8a	9_b	0c	2_{0}	•	52	•	•	c_5	•	•
•	6a	a_b	•	1_{0}	0_{1}	•	4_{3}	84	•	b_6	•	3_{8}
6a	a_b	•	•	⁹ 1	$^{3}2$	4_{3}	2_{4}	•	b_6	•	•	1_9
•	5c	1_{0}	2_{1}	c_2	4_{3}	0_{4}	7_{5}	•	3_{7}	•	•	•
7c	•	5_{1}	4_{2}	2_3	c_4	6_{5}	$^{3}6$	1_7	•	•	•	•